P. N. Tehrani, A. A. Calagari, F. V. Roldan, V. Simmonds, Kamal Siahcheshm
{"title":"C and O stable isotopes and rare earth elements in the Devonian carbonate host rock of the Pivehzhan iron deposit, NE Iran","authors":"P. N. Tehrani, A. A. Calagari, F. V. Roldan, V. Simmonds, Kamal Siahcheshm","doi":"10.1344/GEOLOGICAACTA2018.16.2.2","DOIUrl":null,"url":null,"abstract":"The Pivehzhan iron deposit is located at about 80km southwest of Mashhad, NE Iran. They occur within the Devonian carbonates as lenticular and massive bodies, as well as veinlets of magnetite and iron sulphides, transformed to goethite and haematite by weathering process. The hydrothermal calcite is the most important gangue mineral, which is observed in the form of veins/veinlets and open-space filling. The iron ores are accompanied by some minor elements such as Mn, Ti, Cr, and V and negligible amounts of Co and Ni. The distribution pattern of Rare Earth Elements (REEs) normalized to Post Archean Australian Shale (PAAS), which is characterized by the upward convex, as well as the positive Eu anomalies indicate the activity of reduced and acidic hydrothermal fluids. The negative Ce anomalies of host carbonates, although slight, point to the dominance of anoxic conditions during interaction with hydrothermal fluids. The hydrothermal calcite and quartz coexisting with the iron minerals contain principally fluid, which were homogenized into liquid phase. The homogenization temperature (TH (L-V) ) and the salinity of the analysed fluid inclusions range from 129°C to 270°C and from 0.4wt.% to 9.41wt.% NaCl eq., respectively. The δ 13 C PDB and δ 18 O SMOW values ranges from -2.15‰ to -5.77‰ (PeeDee Belemnite standard, PDB) and from +19.87‰ to +21.64‰ (Standard Mean Ocean Water standard, SMOW) in hydrothermal calcite veinlets occurring with iron minerals and -0.66‰ to -4.37‰ (PDB) and +15.55‰ to +20.14‰ (SMOW) within the host carbonates, respectively. The field relations and petrographic examination along with geochemical and isotopic considerations indicate that the Pivehzhan iron deposit was formed through replacement processes by reducing and acid fluids containing light carbon and oxygen isotopes. Variations in the physico-chemical conditions of hydrothermal fluids and their interaction with carbonates were the most effective mechanisms in the formation of this iron deposit. The potential source of iron was probably the basement magmatic rocks from which iron was leached by hydrothermal solutions.","PeriodicalId":55107,"journal":{"name":"Geologica Acta","volume":"16 1","pages":"125-148"},"PeriodicalIF":1.3000,"publicationDate":"2018-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geologica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1344/GEOLOGICAACTA2018.16.2.2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
The Pivehzhan iron deposit is located at about 80km southwest of Mashhad, NE Iran. They occur within the Devonian carbonates as lenticular and massive bodies, as well as veinlets of magnetite and iron sulphides, transformed to goethite and haematite by weathering process. The hydrothermal calcite is the most important gangue mineral, which is observed in the form of veins/veinlets and open-space filling. The iron ores are accompanied by some minor elements such as Mn, Ti, Cr, and V and negligible amounts of Co and Ni. The distribution pattern of Rare Earth Elements (REEs) normalized to Post Archean Australian Shale (PAAS), which is characterized by the upward convex, as well as the positive Eu anomalies indicate the activity of reduced and acidic hydrothermal fluids. The negative Ce anomalies of host carbonates, although slight, point to the dominance of anoxic conditions during interaction with hydrothermal fluids. The hydrothermal calcite and quartz coexisting with the iron minerals contain principally fluid, which were homogenized into liquid phase. The homogenization temperature (TH (L-V) ) and the salinity of the analysed fluid inclusions range from 129°C to 270°C and from 0.4wt.% to 9.41wt.% NaCl eq., respectively. The δ 13 C PDB and δ 18 O SMOW values ranges from -2.15‰ to -5.77‰ (PeeDee Belemnite standard, PDB) and from +19.87‰ to +21.64‰ (Standard Mean Ocean Water standard, SMOW) in hydrothermal calcite veinlets occurring with iron minerals and -0.66‰ to -4.37‰ (PDB) and +15.55‰ to +20.14‰ (SMOW) within the host carbonates, respectively. The field relations and petrographic examination along with geochemical and isotopic considerations indicate that the Pivehzhan iron deposit was formed through replacement processes by reducing and acid fluids containing light carbon and oxygen isotopes. Variations in the physico-chemical conditions of hydrothermal fluids and their interaction with carbonates were the most effective mechanisms in the formation of this iron deposit. The potential source of iron was probably the basement magmatic rocks from which iron was leached by hydrothermal solutions.
期刊介绍:
- Relevant conceptual developments in any area of the Earth Sciences.
- Studies presenting regional synthesis.
- Thematic issues or monographic volumes presenting the results from one or more research groups.
- Short papers reflecting interesting results or works in progress.
- Contributions and results from Research Projects, Workshops, Symposiums, Congresses and any relevant scientific activity related to Earth Sciences.
- Geologica Acta aims to stimulate rapid diffusion of results and efficient exchange of ideas between the widespread communities of Earth Science researchers (with special emphasis on Latinamerica, the Caribbean, Europe, the Mediterranean