Xiao Fan , Kaiying Wang , Xiaoqing He , Shiguang Li , Miao Yu , Xinhua Liang
{"title":"Pd-modified CuO-ZnO-Al2O3 catalysts via mixed-phases-containing precursor for methanol synthesis from CO2 hydrogenation under mild conditions","authors":"Xiao Fan , Kaiying Wang , Xiaoqing He , Shiguang Li , Miao Yu , Xinhua Liang","doi":"10.1016/j.crcon.2023.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>A series of palladium-modified (Pd-modified) CuO-ZnO-Al<sub>2</sub>O<sub>3</sub> (CZA) catalysts with various Pd loadings (0.3 wt% to 2.4 wt%) were prepared using the wetness impregnation method, on two CZA supports with different structures that are CZA-aged precursor composed of a mixture of zincian-malachite and hydrotalcite-like phases (CZA-zH), and CuO-ZnO-Al<sub>2</sub>O<sub>3</sub> metal oxide nanoparticles (CZA-MO). Enhancement on catalytic activity can be observed on both Pd-modified CZA catalysts in a temperature range of 180–240 °C for methanol synthesis via CO<sub>2</sub> hydrogenation. Pd/CZA-zH catalysts exhibited a more efficient and stable production of methanol at a relatively low reaction temperature of 180 °C for 100 hrs of reaction. The improvement of activity is mainly ascribed to a higher surface area and abundant oxygen-containing functional groups (e.g., –OH) of CZA-zH support, which is beneficial for better adsorption and distribution of Pd promoter. Hydrogen temperature programmed reduction and X-ray photoelectron spectroscopy results demonstrated a better interaction between Pd and Cu on Pd/CZA-zH catalysts via enhanced reducibility of CuO, and peak shift of Cu to a lower binding energy. The difference in the efficient utilization of hydrogen spillover effect of Pd promoter over two CZA supports resulted in the different performances for methanol synthesis under mild reaction conditions.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 1","pages":"Article 100184"},"PeriodicalIF":6.4000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S258891332300039X/pdfft?md5=5b83c1dacc8aa0d0615f24fbc27cf82c&pid=1-s2.0-S258891332300039X-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Resources Conversion","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258891332300039X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
A series of palladium-modified (Pd-modified) CuO-ZnO-Al2O3 (CZA) catalysts with various Pd loadings (0.3 wt% to 2.4 wt%) were prepared using the wetness impregnation method, on two CZA supports with different structures that are CZA-aged precursor composed of a mixture of zincian-malachite and hydrotalcite-like phases (CZA-zH), and CuO-ZnO-Al2O3 metal oxide nanoparticles (CZA-MO). Enhancement on catalytic activity can be observed on both Pd-modified CZA catalysts in a temperature range of 180–240 °C for methanol synthesis via CO2 hydrogenation. Pd/CZA-zH catalysts exhibited a more efficient and stable production of methanol at a relatively low reaction temperature of 180 °C for 100 hrs of reaction. The improvement of activity is mainly ascribed to a higher surface area and abundant oxygen-containing functional groups (e.g., –OH) of CZA-zH support, which is beneficial for better adsorption and distribution of Pd promoter. Hydrogen temperature programmed reduction and X-ray photoelectron spectroscopy results demonstrated a better interaction between Pd and Cu on Pd/CZA-zH catalysts via enhanced reducibility of CuO, and peak shift of Cu to a lower binding energy. The difference in the efficient utilization of hydrogen spillover effect of Pd promoter over two CZA supports resulted in the different performances for methanol synthesis under mild reaction conditions.
期刊介绍:
Carbon Resources Conversion (CRC) publishes fundamental studies and industrial developments regarding relevant technologies aiming for the clean, efficient, value-added, and low-carbon utilization of carbon-containing resources as fuel for energy and as feedstock for materials or chemicals from, for example, fossil fuels, biomass, syngas, CO2, hydrocarbons, and organic wastes via physical, thermal, chemical, biological, and other technical methods. CRC also publishes scientific and engineering studies on resource characterization and pretreatment, carbon material innovation and production, clean technologies related to carbon resource conversion and utilization, and various process-supporting technologies, including on-line or off-line measurement and monitoring, modeling, simulations focused on safe and efficient process operation and control, and process and equipment optimization.