Rigidity of capillary surfaces in compact 3-manifolds with strictly convex boundary

Pub Date : 2023-02-01 DOI:10.1017/S0013091523000135
P. Sousa, R. Batista, B. P. Lima, Bruno Vasconcelos Mendes Vieira
{"title":"Rigidity of capillary surfaces in compact 3-manifolds with strictly convex boundary","authors":"P. Sousa, R. Batista, B. P. Lima, Bruno Vasconcelos Mendes Vieira","doi":"10.1017/S0013091523000135","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we obtain one sharp estimate for the length $L(\\partial\\Sigma)$ of the boundary $\\partial\\Sigma$ of a capillary minimal surface Σ2 in M3, where M is a compact three-manifolds with strictly convex boundary, assuming Σ has index one. The estimate is in term of the genus of Σ, the number of connected components of $\\partial\\Sigma$ and the constant contact angle θ. Making an extra assumption on the geometry of M along $\\partial M$, we characterize the global geometry of M, which is saturated only by the Euclidean three-balls. For capillary stable CMC surfaces, we also obtain similar results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0013091523000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we obtain one sharp estimate for the length $L(\partial\Sigma)$ of the boundary $\partial\Sigma$ of a capillary minimal surface Σ2 in M3, where M is a compact three-manifolds with strictly convex boundary, assuming Σ has index one. The estimate is in term of the genus of Σ, the number of connected components of $\partial\Sigma$ and the constant contact angle θ. Making an extra assumption on the geometry of M along $\partial M$, we characterize the global geometry of M, which is saturated only by the Euclidean three-balls. For capillary stable CMC surfaces, we also obtain similar results.
分享
查看原文
具有严格凸边界的紧致3流形毛细管表面的刚性
摘要本文给出了M3中毛细极小曲面Σ2的边界$\partial\Sigma$长度$L(\partial\Sigma)$的一个尖锐估计,其中M是具有严格凸边界的紧致三流形,假设Σ的指标为1。估计是根据Σ的属、$\partial\Sigma$的连接分量的数目和恒定的接触角θ。对M沿$\partial M$的几何形状做一个额外的假设,我们描述了M的全局几何形状,它只被欧几里得三球饱和。对于毛细管稳定的CMC表面,我们也得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信