{"title":"Square root p-adic L-functions, I : Construction\nof a one-variable measure","authors":"M. Harris","doi":"10.2140/tunis.2021.3.657","DOIUrl":null,"url":null,"abstract":"The Ichino-Ikeda conjecture, and its generalization to unitary groups by N. Harris, has given explicit formulas for central critical values of a large class of Rankin-Selberg tensor products. Although the conjecture is not proved in full generality, there has been considerable progress, especially for $L$-values of the form $L(1/2,BC(\\pi) \\times BC(\\pi'))$, where $\\pi$ and $\\pi'$ are cohomological automorphic representations of unitary groups $U(V)$ and $U(V')$, respectively. Here $V$ and $V'$ are hermitian spaces over a CM field, $V$ of dimension $n$, $V'$ of codimension $1$ in $V$, and $BC$ denotes the twisted base change to $GL(n) \\times GL(n-1)$. \nThis paper contains the first steps toward generalizing the construction of my paper with Tilouine on triple product $L$-functions to this situation. We assume $\\pi$ is a holomorphic representation and $\\pi'$ varies in an ordinary Hida family (of antiholomorphic forms). The construction of the measure attached to $\\pi$ uses recent work of Eischen, Fintzen, Mantovan, and Varma.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2021.3.657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
The Ichino-Ikeda conjecture, and its generalization to unitary groups by N. Harris, has given explicit formulas for central critical values of a large class of Rankin-Selberg tensor products. Although the conjecture is not proved in full generality, there has been considerable progress, especially for $L$-values of the form $L(1/2,BC(\pi) \times BC(\pi'))$, where $\pi$ and $\pi'$ are cohomological automorphic representations of unitary groups $U(V)$ and $U(V')$, respectively. Here $V$ and $V'$ are hermitian spaces over a CM field, $V$ of dimension $n$, $V'$ of codimension $1$ in $V$, and $BC$ denotes the twisted base change to $GL(n) \times GL(n-1)$.
This paper contains the first steps toward generalizing the construction of my paper with Tilouine on triple product $L$-functions to this situation. We assume $\pi$ is a holomorphic representation and $\pi'$ varies in an ordinary Hida family (of antiholomorphic forms). The construction of the measure attached to $\pi$ uses recent work of Eischen, Fintzen, Mantovan, and Varma.