Square root p-adic L-functions, I : Construction of a one-variable measure

IF 0.8 Q2 MATHEMATICS
M. Harris
{"title":"Square root p-adic L-functions, I : Construction\nof a one-variable measure","authors":"M. Harris","doi":"10.2140/tunis.2021.3.657","DOIUrl":null,"url":null,"abstract":"The Ichino-Ikeda conjecture, and its generalization to unitary groups by N. Harris, has given explicit formulas for central critical values of a large class of Rankin-Selberg tensor products. Although the conjecture is not proved in full generality, there has been considerable progress, especially for $L$-values of the form $L(1/2,BC(\\pi) \\times BC(\\pi'))$, where $\\pi$ and $\\pi'$ are cohomological automorphic representations of unitary groups $U(V)$ and $U(V')$, respectively. Here $V$ and $V'$ are hermitian spaces over a CM field, $V$ of dimension $n$, $V'$ of codimension $1$ in $V$, and $BC$ denotes the twisted base change to $GL(n) \\times GL(n-1)$. \nThis paper contains the first steps toward generalizing the construction of my paper with Tilouine on triple product $L$-functions to this situation. We assume $\\pi$ is a holomorphic representation and $\\pi'$ varies in an ordinary Hida family (of antiholomorphic forms). The construction of the measure attached to $\\pi$ uses recent work of Eischen, Fintzen, Mantovan, and Varma.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2021.3.657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The Ichino-Ikeda conjecture, and its generalization to unitary groups by N. Harris, has given explicit formulas for central critical values of a large class of Rankin-Selberg tensor products. Although the conjecture is not proved in full generality, there has been considerable progress, especially for $L$-values of the form $L(1/2,BC(\pi) \times BC(\pi'))$, where $\pi$ and $\pi'$ are cohomological automorphic representations of unitary groups $U(V)$ and $U(V')$, respectively. Here $V$ and $V'$ are hermitian spaces over a CM field, $V$ of dimension $n$, $V'$ of codimension $1$ in $V$, and $BC$ denotes the twisted base change to $GL(n) \times GL(n-1)$. This paper contains the first steps toward generalizing the construction of my paper with Tilouine on triple product $L$-functions to this situation. We assume $\pi$ is a holomorphic representation and $\pi'$ varies in an ordinary Hida family (of antiholomorphic forms). The construction of the measure attached to $\pi$ uses recent work of Eischen, Fintzen, Mantovan, and Varma.
平方根p进l函数,I:单变量测度的构造
Ichino-Ikeda猜想及其N.Harris对酉群的推广,给出了一大类Rankin-Selberg张量积中心临界值的显式公式。尽管该猜想没有得到充分的普遍性证明,但已经取得了相当大的进展,特别是对于形式为$L(1/2,BC(\pi)\乘以BC(\pi')$的$L$-值,其中$\pi$和$\pi'$分别是酉群$U(V)$和$U(V')$上同调自同构表示。这里$V$和$V'$是CM域上的hermitian空间,$V$中的维度$n$的$V$,余维度$1$的$V'$,并且$BC$表示到$GL(n)\乘以GL(n-1)$的扭曲基变化。本文包含了将我的论文的构造用Tilouine关于三乘积$L$-函数推广到这种情况的第一步。我们假设$\pi$是全纯表示,并且$\pi'$在普通Hida族(反全纯形式)中变化。$\pi$所附措施的构建使用了Eischen、Fintzen、Mantovan和Varma最近的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信