Modelos algorítmicos y fact-checking automatizado. Revisión sistemática de la literatura

IF 0.2 Q4 COMMUNICATION
David García-Marín
{"title":"Modelos algorítmicos y fact-checking automatizado. Revisión sistemática de la literatura","authors":"David García-Marín","doi":"10.5209/dcin.77472","DOIUrl":null,"url":null,"abstract":"El fact-checking automatizado consiste en la comprobación automática de la veracidad de una información aplicando las tecnologías de inteligencia artificial existentes para clasificarla en alguna de las categorías comúnmente usadas por los fact-checkers humanos (verdadero, engañoso, falso, etc.). Este trabajo presenta el primer análisis bibliométrico en castellano -de tipo cuantitativo- sobre la evolución y los países de procedencia de la investigación sobre esta práctica. Asimismo, pretende analizar el nivel de precisión de las soluciones algorítmicas y el impacto de los trabajos publicados, utilizando para ello tratamientos estadísticos descriptivos e inferenciales (pruebas de chi cuadrado y test de Kruskal-Wallis). De acuerdo con nuestros resultados, en los últimos tres años se concentra el mayor volumen de aportaciones, que proceden mayoritariamente de la región asiática y Estados Unidos. Predominan los trabajos que proponen métodos o sistemas algorítmicos integrados. Son mayoritarios los estudios sobre modelos lingüísticos, que presentan aún varias limitaciones y una efectividad inferior a la media. Se observa una reducida atención hacia los modelos basados en el análisis de imágenes, y resulta prácticamente nula la presencia de algoritmos de detección de audios falsos. En línea con trabajos anteriores, nuestro estudio concluye que no existen diferencias estadísticamente significativas en el nivel de precisión de los diversos modelos algorítmicos propuestos, a pesar de sus diferentes grados de complejidad técnica.","PeriodicalId":40906,"journal":{"name":"Documentacion de las Ciencias de la Informacion","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documentacion de las Ciencias de la Informacion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5209/dcin.77472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 4

Abstract

El fact-checking automatizado consiste en la comprobación automática de la veracidad de una información aplicando las tecnologías de inteligencia artificial existentes para clasificarla en alguna de las categorías comúnmente usadas por los fact-checkers humanos (verdadero, engañoso, falso, etc.). Este trabajo presenta el primer análisis bibliométrico en castellano -de tipo cuantitativo- sobre la evolución y los países de procedencia de la investigación sobre esta práctica. Asimismo, pretende analizar el nivel de precisión de las soluciones algorítmicas y el impacto de los trabajos publicados, utilizando para ello tratamientos estadísticos descriptivos e inferenciales (pruebas de chi cuadrado y test de Kruskal-Wallis). De acuerdo con nuestros resultados, en los últimos tres años se concentra el mayor volumen de aportaciones, que proceden mayoritariamente de la región asiática y Estados Unidos. Predominan los trabajos que proponen métodos o sistemas algorítmicos integrados. Son mayoritarios los estudios sobre modelos lingüísticos, que presentan aún varias limitaciones y una efectividad inferior a la media. Se observa una reducida atención hacia los modelos basados en el análisis de imágenes, y resulta prácticamente nula la presencia de algoritmos de detección de audios falsos. En línea con trabajos anteriores, nuestro estudio concluye que no existen diferencias estadísticamente significativas en el nivel de precisión de los diversos modelos algorítmicos propuestos, a pesar de sus diferentes grados de complejidad técnica.
算法模型和自动事实检查。文献系统回顾
自动事实检查是利用现有的人工智能技术,自动检查信息的真实性,将其归类为人类事实检查人员常用的类别之一(真、假、假等)。这篇文章介绍了第一篇关于这一做法研究的演变和来源国的西班牙语定量文献计量分析。它还旨在分析算法解决方案的精度水平和发表论文的影响,为此使用描述性和推断性统计处理(卡方检验和Kruskal-Wallis检验)。根据我们的结果,过去三年的捐款最多,主要来自亚洲地区和美国。提出综合算法方法或系统的工作占主导地位。对语言模型的研究占多数,但仍有一些局限性和低于平均水平的有效性。人们对基于图像分析的模型的关注很少,虚假音频检测算法的存在几乎为零。根据先前的工作,我们的研究得出的结论是,尽管所提出的各种算法模型的技术复杂性程度不同,但其精度水平没有统计上的显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
50.00%
发文量
31
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信