D. Fleur, M. Marshall, Miguel Pieters, N. Brouwer, Gerrit Oomens, Angelos Konstantinidis, K. Winnips, S. Moes, W. van den Bos, B. Bredeweg, E. V. van Vliet
{"title":"IguideME:","authors":"D. Fleur, M. Marshall, Miguel Pieters, N. Brouwer, Gerrit Oomens, Angelos Konstantinidis, K. Winnips, S. Moes, W. van den Bos, B. Bredeweg, E. V. van Vliet","doi":"10.18608/jla.2023.7853","DOIUrl":null,"url":null,"abstract":"Personalized feedback is important for the learning process, but it is time consuming and particularly problematic in large-scale courses. While automatic feedback may help for self-regulated learning, not all forms of feedback are effective. Social comparison offers powerful feedback but is often loosely designed. We propose that intertwining meaningful feedback with well-designed peer comparison using a learning analytics dashboard provides a solution. Third-year bachelor students were randomly assigned to have access to the learning analytics dashboard IguideME (treatment, n=31) or no access (control, n=31). Dashboard users were asked to indicate their desired grade, which was used to construct peer-comparison groups. Personalized peer-comparison feedback was provided via the dashboard. The effects were studied using quantitative and qualitative data, including the Motivated Strategies for Learning Questionnaire (MSLQ) and the Achievement Goal Questionnaire (AGQ). Compared to the control group, the treatment group achieved higher scores for the MSLQ components “metacognitive self-regulation” and “peer learning,” and for the AGQ component “other-approach” (do better than others). The treatment group performed better on reading assignments and achieved higher grades for high-level Bloom exam questions. These data support the hypothesis that personalized peer-comparison feedback can be used to improve self-regulated learning and academic achievement.","PeriodicalId":36754,"journal":{"name":"Journal of Learning Analytics","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Learning Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18608/jla.2023.7853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Personalized feedback is important for the learning process, but it is time consuming and particularly problematic in large-scale courses. While automatic feedback may help for self-regulated learning, not all forms of feedback are effective. Social comparison offers powerful feedback but is often loosely designed. We propose that intertwining meaningful feedback with well-designed peer comparison using a learning analytics dashboard provides a solution. Third-year bachelor students were randomly assigned to have access to the learning analytics dashboard IguideME (treatment, n=31) or no access (control, n=31). Dashboard users were asked to indicate their desired grade, which was used to construct peer-comparison groups. Personalized peer-comparison feedback was provided via the dashboard. The effects were studied using quantitative and qualitative data, including the Motivated Strategies for Learning Questionnaire (MSLQ) and the Achievement Goal Questionnaire (AGQ). Compared to the control group, the treatment group achieved higher scores for the MSLQ components “metacognitive self-regulation” and “peer learning,” and for the AGQ component “other-approach” (do better than others). The treatment group performed better on reading assignments and achieved higher grades for high-level Bloom exam questions. These data support the hypothesis that personalized peer-comparison feedback can be used to improve self-regulated learning and academic achievement.