{"title":"Education and training for industrial biotechnology and engineering biology","authors":"Camille J. Delebecque, Jim Philp","doi":"10.1049/enb.2018.0001","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Industrial biotechnology is focused on the production of bio-based fuels, chemicals and materials such as plastics and textiles. Engineering biology, synonymous with synthetic biology, provides a platform technology that brings an engineering approach to harnessing biotechnology for industrial production. The two combine within the political construct of the future bioeconomy, in which bio-based gradually replaces fossil-based production. There are many barriers to this future, including technical, political and social aspects. Behind all of these is a need for a new form of workforce not seen before, in which various skills and knowledge bases merge and combine. The required multi- and interdisciplinary skills challenge higher education to get out of the discipline-dominated paradigm. This study examines some of the current and future critical issues and provides some examples of how higher education is rising to the challenge.</p>\n </div>","PeriodicalId":72921,"journal":{"name":"Engineering biology","volume":"3 1","pages":"6-11"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/enb.2018.0001","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/enb.2018.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Industrial biotechnology is focused on the production of bio-based fuels, chemicals and materials such as plastics and textiles. Engineering biology, synonymous with synthetic biology, provides a platform technology that brings an engineering approach to harnessing biotechnology for industrial production. The two combine within the political construct of the future bioeconomy, in which bio-based gradually replaces fossil-based production. There are many barriers to this future, including technical, political and social aspects. Behind all of these is a need for a new form of workforce not seen before, in which various skills and knowledge bases merge and combine. The required multi- and interdisciplinary skills challenge higher education to get out of the discipline-dominated paradigm. This study examines some of the current and future critical issues and provides some examples of how higher education is rising to the challenge.