{"title":"ROLE OF ALLEE EFFECT AND HARVESTING OF A FOOD-WEB SYSTEM IN THE PRESENCE OF SCAVENGERS","authors":"R. Gupta, Dinesh K. Yadav","doi":"10.1142/s021833902250005x","DOIUrl":null,"url":null,"abstract":"The role of scavengers, which consume the carcasses of predators along with predation of the prey, has been ignored in comparisons to herbivores and predators. It has now become a topic of high interest among researchers working with food-web systems of prey–predator interactions. The food-web considered in these works contains prey, predators, and scavengers as the third species. In this work, we attempt to study a food-web model of these species in the presence of the multiplicative Allee effect and harvesting. It is observed that this makes the model more complex in the form of multiple co-existing steady states. The conditions for the existence and local stability of all possible steady states of the proposed system are analyzed. The global stability of the steady state lying on the x-axis and the interior steady state have been discussed by choosing suitable Lyapunov functions. The existence conditions for saddle-node and Hopf bifurcations are derived analytically. The stability of Hopf bifurcating periodic solutions with respect to both Allee and harvesting constants is examined. It is also observed that multiple Hopf bifurcation thresholds occur for harvesting parameters in the case of two co-existing steady states, which indicates that the system may regain its stability. The proposed model is also studied beyond Hopf bifurcation thresholds, where we have observed that the model is capable of exhibiting period-doubling routes to chaos, which can be controlled by a suitable choice of Allee and harvesting parameters. The largest Lyapunov exponents and sensitivity to initial conditions are examined to ensure the chaotic nature of the system.","PeriodicalId":54872,"journal":{"name":"Journal of Biological Systems","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s021833902250005x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The role of scavengers, which consume the carcasses of predators along with predation of the prey, has been ignored in comparisons to herbivores and predators. It has now become a topic of high interest among researchers working with food-web systems of prey–predator interactions. The food-web considered in these works contains prey, predators, and scavengers as the third species. In this work, we attempt to study a food-web model of these species in the presence of the multiplicative Allee effect and harvesting. It is observed that this makes the model more complex in the form of multiple co-existing steady states. The conditions for the existence and local stability of all possible steady states of the proposed system are analyzed. The global stability of the steady state lying on the x-axis and the interior steady state have been discussed by choosing suitable Lyapunov functions. The existence conditions for saddle-node and Hopf bifurcations are derived analytically. The stability of Hopf bifurcating periodic solutions with respect to both Allee and harvesting constants is examined. It is also observed that multiple Hopf bifurcation thresholds occur for harvesting parameters in the case of two co-existing steady states, which indicates that the system may regain its stability. The proposed model is also studied beyond Hopf bifurcation thresholds, where we have observed that the model is capable of exhibiting period-doubling routes to chaos, which can be controlled by a suitable choice of Allee and harvesting parameters. The largest Lyapunov exponents and sensitivity to initial conditions are examined to ensure the chaotic nature of the system.
期刊介绍:
The Journal of Biological Systems is published quarterly. The goal of the Journal is to promote interdisciplinary approaches in Biology and in Medicine, and the study of biological situations with a variety of tools, including mathematical and general systems methods. The Journal solicits original research papers and survey articles in areas that include (but are not limited to):
Complex systems studies; isomorphies; nonlinear dynamics; entropy; mathematical tools and systems theories with applications in Biology and Medicine.
Interdisciplinary approaches in Biology and Medicine; transfer of methods from one discipline to another; integration of biological levels, from atomic to molecular, macromolecular, cellular, and organic levels; animal biology; plant biology.
Environmental studies; relationships between individuals, populations, communities and ecosystems; bioeconomics, management of renewable resources; hierarchy theory; integration of spatial and time scales.
Evolutionary biology; co-evolutions; genetics and evolution; branching processes and phyllotaxis.
Medical systems; physiology; cardiac modeling; computer models in Medicine; cancer research; epidemiology.
Numerical simulations and computations; numerical study and analysis of biological data.
Epistemology; history of science.
The journal will also publish book reviews.