Xu Han, M. H. Razmpoosh, E. Biro, Y. Zhou, A. Macwan
{"title":"Effect of Galvannealed Coating Evolution during Press Hardening on RSW Weldability","authors":"Xu Han, M. H. Razmpoosh, E. Biro, Y. Zhou, A. Macwan","doi":"10.29391/2020.99.015","DOIUrl":null,"url":null,"abstract":"Press-hardening steels (PHSs) are used in modern passenger vehicles to increase part strength while reducing vehicle weight to meet both environmental and safety regulations. To prevent oxidization and decarburization during heat treatment, some PHSs are coated with Zn (galvanized or galvannealed). Heating during the press-hardening process drives interdiffusion of Zn from the coating and the Fe from the steel substrate, forming a diffusion layer composed of -Fe phase (a Zn-Fe solid solution). The electrical resistance of the diffusion layer is a function of its thickness and Zn-Fe composition. Both the diffusion layer thickness and the Zn-Fe composition are dependent on the initial coating thickness and heat-treatment time/temperature conditions. Changes to the heat-treatment process shift the resistance spot welding process window by altering the resistance behavior of the material. If the shift in the process window is not accounted for during assembly welding, the welds produced may either be too small or exhibit expulsion, both of which will reduce the strength of the weld. This study showed increasing heattreatment time shifted the process window toward lower current. A final combined processing window of 1.5 kA, which is suitable for industrial application, was obtained when taking into account the variation in heat-treatment time. The tensile shear performance was not affected by the heat treatment, as increased softening in the heat-affected zone at longer heat-treatment time canceled the strength gain from increas-","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2020.99.015","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 2
Abstract
Press-hardening steels (PHSs) are used in modern passenger vehicles to increase part strength while reducing vehicle weight to meet both environmental and safety regulations. To prevent oxidization and decarburization during heat treatment, some PHSs are coated with Zn (galvanized or galvannealed). Heating during the press-hardening process drives interdiffusion of Zn from the coating and the Fe from the steel substrate, forming a diffusion layer composed of -Fe phase (a Zn-Fe solid solution). The electrical resistance of the diffusion layer is a function of its thickness and Zn-Fe composition. Both the diffusion layer thickness and the Zn-Fe composition are dependent on the initial coating thickness and heat-treatment time/temperature conditions. Changes to the heat-treatment process shift the resistance spot welding process window by altering the resistance behavior of the material. If the shift in the process window is not accounted for during assembly welding, the welds produced may either be too small or exhibit expulsion, both of which will reduce the strength of the weld. This study showed increasing heattreatment time shifted the process window toward lower current. A final combined processing window of 1.5 kA, which is suitable for industrial application, was obtained when taking into account the variation in heat-treatment time. The tensile shear performance was not affected by the heat treatment, as increased softening in the heat-affected zone at longer heat-treatment time canceled the strength gain from increas-
期刊介绍:
The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction.
Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.