Predicting student performance in a blended learning environment using learning management system interaction data

IF 12.3 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Kiran Fahd, S. Miah, Khandakar Ahmed
{"title":"Predicting student performance in a blended learning environment using learning management system interaction data","authors":"Kiran Fahd, S. Miah, Khandakar Ahmed","doi":"10.1108/aci-06-2021-0150","DOIUrl":null,"url":null,"abstract":"PurposeStudent attritions in tertiary educational institutes may play a significant role to achieve core values leading towards strategic mission and financial well-being. Analysis of data generated from student interaction with learning management systems (LMSs) in blended learning (BL) environments may assist with the identification of students at risk of failing, but to what extent this may be possible is unknown. However, existing studies are limited to address the issues at a significant scale.Design/methodology/approachThis study develops a new approach harnessing applications of machine learning (ML) models on a dataset, that is publicly available, relevant to student attrition to identify potential students at risk. The dataset consists of the data generated by the interaction of students with LMS for their BL environment.FindingsIdentifying students at risk through an innovative approach will promote timely intervention in the learning process, such as for improving student academic progress. To evaluate the performance of the proposed approach, the accuracy is compared with other representational ML methods.Originality/valueThe best ML algorithm random forest with 85% is selected to support educators in implementing various pedagogical practices to improve students’ learning.","PeriodicalId":37348,"journal":{"name":"Applied Computing and Informatics","volume":null,"pages":null},"PeriodicalIF":12.3000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/aci-06-2021-0150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 10

Abstract

PurposeStudent attritions in tertiary educational institutes may play a significant role to achieve core values leading towards strategic mission and financial well-being. Analysis of data generated from student interaction with learning management systems (LMSs) in blended learning (BL) environments may assist with the identification of students at risk of failing, but to what extent this may be possible is unknown. However, existing studies are limited to address the issues at a significant scale.Design/methodology/approachThis study develops a new approach harnessing applications of machine learning (ML) models on a dataset, that is publicly available, relevant to student attrition to identify potential students at risk. The dataset consists of the data generated by the interaction of students with LMS for their BL environment.FindingsIdentifying students at risk through an innovative approach will promote timely intervention in the learning process, such as for improving student academic progress. To evaluate the performance of the proposed approach, the accuracy is compared with other representational ML methods.Originality/valueThe best ML algorithm random forest with 85% is selected to support educators in implementing various pedagogical practices to improve students’ learning.
利用学习管理系统交互数据预测混合式学习环境中的学生表现
目的:高等教育机构的学生流失可能在实现核心价值方面发挥重要作用,从而实现战略使命和财务福利。对混合学习(BL)环境中学生与学习管理系统(lms)互动产生的数据进行分析,可能有助于识别有不及格风险的学生,但这在多大程度上可能是未知的。然而,现有的研究仅限于大规模地解决这些问题。设计/方法/方法本研究开发了一种利用机器学习(ML)模型在数据集上的应用的新方法,该数据集是公开的,与学生流失相关,以识别有风险的潜在学生。数据集由学生与LMS交互生成的数据组成,用于他们的BL环境。通过一种创新的方法来识别有风险的学生,将促进对学习过程的及时干预,例如提高学生的学业进步。为了评估该方法的性能,将其准确性与其他表征ML方法进行了比较。原创性/价值选择85%的最佳ML算法随机森林,以支持教育工作者实施各种教学实践,以提高学生的学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computing and Informatics
Applied Computing and Informatics Computer Science-Information Systems
CiteScore
12.20
自引率
0.00%
发文量
0
审稿时长
39 weeks
期刊介绍: Applied Computing and Informatics aims to be timely in disseminating leading-edge knowledge to researchers, practitioners and academics whose interest is in the latest developments in applied computing and information systems concepts, strategies, practices, tools and technologies. In particular, the journal encourages research studies that have significant contributions to make to the continuous development and improvement of IT practices in the Kingdom of Saudi Arabia and other countries. By doing so, the journal attempts to bridge the gap between the academic and industrial community, and therefore, welcomes theoretically grounded, methodologically sound research studies that address various IT-related problems and innovations of an applied nature. The journal will serve as a forum for practitioners, researchers, managers and IT policy makers to share their knowledge and experience in the design, development, implementation, management and evaluation of various IT applications. Contributions may deal with, but are not limited to: • Internet and E-Commerce Architecture, Infrastructure, Models, Deployment Strategies and Methodologies. • E-Business and E-Government Adoption. • Mobile Commerce and their Applications. • Applied Telecommunication Networks. • Software Engineering Approaches, Methodologies, Techniques, and Tools. • Applied Data Mining and Warehousing. • Information Strategic Planning and Recourse Management. • Applied Wireless Computing. • Enterprise Resource Planning Systems. • IT Education. • Societal, Cultural, and Ethical Issues of IT. • Policy, Legal and Global Issues of IT. • Enterprise Database Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信