{"title":"Theoretical Tire Model Considering Two-Dimensional Contact Patch for Force and Moment","authors":"Y. Nakajima, S. Hidano","doi":"10.2346/tire.21.20005","DOIUrl":null,"url":null,"abstract":"\n The new theoretical tire model for force and moment has been developed by considering a two-dimensional contact patch of a tire with rib pattern. The force and moment are compared with the calculation by finite element method (FEM). The side force predicted by the theoretical tire model is somewhat undervalued as compared with the FEM calculation, while the self-aligning torque predicted by the theoretical tire model agrees well with the FEM calculation. The shear force distribution in a two-dimensional contact patch under slip angle predicted by the proposed model qualitatively agrees with the FEM calculation. Furthermore, the distribution of the adhesion region and sliding region in a two-dimensional contact patch predicted by the theoretical tire model qualitatively agrees with the FEM calculation.","PeriodicalId":44601,"journal":{"name":"Tire Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tire Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2346/tire.21.20005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
The new theoretical tire model for force and moment has been developed by considering a two-dimensional contact patch of a tire with rib pattern. The force and moment are compared with the calculation by finite element method (FEM). The side force predicted by the theoretical tire model is somewhat undervalued as compared with the FEM calculation, while the self-aligning torque predicted by the theoretical tire model agrees well with the FEM calculation. The shear force distribution in a two-dimensional contact patch under slip angle predicted by the proposed model qualitatively agrees with the FEM calculation. Furthermore, the distribution of the adhesion region and sliding region in a two-dimensional contact patch predicted by the theoretical tire model qualitatively agrees with the FEM calculation.
期刊介绍:
Tire Science and Technology is the world"s leading technical journal dedicated to tires. The Editor publishes original contributions that address the development and application of experimental, analytical, or computational science in which the tire figures prominently. Review papers may also be published. The journal aims to assure its readers authoritative, critically reviewed articles and the authors accessibility of their work in the permanent literature. The journal is published quarterly by the Tire Society, Inc., an Ohio not-for-profit corporation whose objective is to increase and disseminate knowledge of the science and technology of tires.