Integral Hydro-Bulge Forming Method of Spherical Pressure Vessels Using a Triangle Patch Polyhedron

IF 1 4区 工程技术 Q4 ENGINEERING, MECHANICAL
Jing Yang, Kong Chenghai, Guan Jingchao, Zhao Wei, Xilu Zhao
{"title":"Integral Hydro-Bulge Forming Method of Spherical Pressure Vessels Using a Triangle Patch Polyhedron","authors":"Jing Yang, Kong Chenghai, Guan Jingchao, Zhao Wei, Xilu Zhao","doi":"10.1115/1.4062120","DOIUrl":null,"url":null,"abstract":"\n This paper proposes an integral hydro-bulge forming (IHBF) method using a triangular patch polyhedron as the closed preform shell. When triangular flat parts are welded along the edges in sequence, triangular patch polyhedra are naturally formed. From the radius of the spherical pressure vessel, a design formula was derived to calculate the side lengths of the triangular flat plate parts. To verify the forming performance of the spherical pressure vessel using the IHBF method, the finite element method was carried out, and a stainless-steel spherical pressure vessel with a thickness of 1.0 mm and a diameter of approximately 500 mm was fabricated using the proposed IHBF method. As a result, the diameter forming error was 5.86%, the shape error expressed as roundness to diameter ratio was 0.48%, and the average plastic strain was 0.02, which was approximately 1/19 times of the forming limit strain of the material. The amount of springback after forming was approximately 0.7 mm, indicating that the amount of water required for IHBF was 5.90% of the volume of the spherical pressure vessel, while the required water pressure was less than 2.4 MPa. The process directly utilizes triangular flat plate parts, eliminating the need for molds to process closed preform shells resulting in a low average plastic strain during forming, thereby improving the quality of the formed spherical pressure vessels.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062120","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an integral hydro-bulge forming (IHBF) method using a triangular patch polyhedron as the closed preform shell. When triangular flat parts are welded along the edges in sequence, triangular patch polyhedra are naturally formed. From the radius of the spherical pressure vessel, a design formula was derived to calculate the side lengths of the triangular flat plate parts. To verify the forming performance of the spherical pressure vessel using the IHBF method, the finite element method was carried out, and a stainless-steel spherical pressure vessel with a thickness of 1.0 mm and a diameter of approximately 500 mm was fabricated using the proposed IHBF method. As a result, the diameter forming error was 5.86%, the shape error expressed as roundness to diameter ratio was 0.48%, and the average plastic strain was 0.02, which was approximately 1/19 times of the forming limit strain of the material. The amount of springback after forming was approximately 0.7 mm, indicating that the amount of water required for IHBF was 5.90% of the volume of the spherical pressure vessel, while the required water pressure was less than 2.4 MPa. The process directly utilizes triangular flat plate parts, eliminating the need for molds to process closed preform shells resulting in a low average plastic strain during forming, thereby improving the quality of the formed spherical pressure vessels.
球面压力容器的三角形面片多面体整体液压胀形方法
提出了一种以三角形贴片多面体作为封闭预成形壳体的整体水胀成形方法。当沿边缘依次焊接三角形平面零件时,自然形成三角形贴片多面体。从球形压力容器的半径出发,推导出三角形平板零件边长的设计公式。为了验证IHBF方法对球形压力容器的成形性能,采用有限元方法制备了厚度为1.0 mm、直径约为500 mm的不锈钢球形压力容器。结果表明,直径成形误差为5.86%,形状误差为圆度与直径比0.48%,平均塑性应变为0.02,约为材料成形极限应变的1/19倍。成形后回弹量约为0.7 mm,说明IHBF所需水量为球形压力容器体积的5.90%,所需水压小于2.4 MPa。该工艺直接利用三角形平板零件,不需要模具加工封闭的预成型壳体,在成型过程中平均塑性应变较低,从而提高了成型的球形压力容器的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
77
审稿时长
4.2 months
期刊介绍: The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards. Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信