On the divisor function over Piatetski-Shapiro sequences

IF 0.4 4区 数学 Q4 MATHEMATICS
Hui Wang, Yu Zhang
{"title":"On the divisor function over Piatetski-Shapiro sequences","authors":"Hui Wang, Yu Zhang","doi":"10.21136/CMJ.2023.0205-22","DOIUrl":null,"url":null,"abstract":"Let [x] be an integer part of x and d(n) be the number of positive divisor of n. Inspired by some results of M. Jutila (1987), we prove that for 1<c<65\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$1 < c < {6 \\over 5}$$\\end{document}∑n≤xd([nc])=cxlogx+(2γ−c)x+O(xlogx),\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sum\\limits_{n \\le x} {d([{n^c}]) = cx\\,\\log x + (2{\\rm{\\gamma }} - c)x + O\\left( {{x \\over {\\log x}}} \\right),} $$\\end{document} where γ is the Euler constant and [nc] is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem.","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"73 1","pages":"613 - 620"},"PeriodicalIF":0.4000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/CMJ.2023.0205-22","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let [x] be an integer part of x and d(n) be the number of positive divisor of n. Inspired by some results of M. Jutila (1987), we prove that for 1
关于Piatetski-Shapiro序列上的除数函数
设[x]是x的整数部分,d(n)是n的正除数。受M.Jutila(1987)的一些结果的启发,我们证明了对于1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信