Geochemical and H–O–Sr–B isotope signatures of Yangyi geothermal fields: implications for the evolution of thermal fluids in fracture-controlled type geothermal system, Tibet, China
{"title":"Geochemical and H–O–Sr–B isotope signatures of Yangyi geothermal fields: implications for the evolution of thermal fluids in fracture-controlled type geothermal system, Tibet, China","authors":"Rui Cao, Ji Dor, YongQiang Cai, XiaoLin Chen, Xiang Mao, Hui-ren Meng","doi":"10.1186/s40517-023-00263-5","DOIUrl":null,"url":null,"abstract":"<div><p>High-temperature hydrothermal systems are mainly distributed in the north–south graben systems of southern Tibet as an important part of the Mediterranean–Tethys Himalayan geothermal belt in mainland China. As the largest unit capacity and second stable operating geothermal power station in China, Yangyi is the fracture-controlled type geothermal field in the center of Yadong–Gulu Graben. In this paper, hydrogeological and hydrochemical characteristics, isotope composition (δD and δ<sup>18</sup>O, <sup>87</sup>Sr/<sup>86</sup>Sr and δ<sup>11</sup>B) of borehole water, hot springs, and surface river samples were analyzed. From the conservative elements (such as Cl<sup>−</sup> and Li<sup>+</sup>) and δD and δ<sup>18</sup>O values, the geothermal water of the Yangyi high-temperature geothermal field is estimated to be of meteoric origin with the contributions of chemical components of the magmatic fluid, which is provided by partially molten granite as a shallow magmatic heat source. According to logging data, the geothermal gradient and terrestrial heat flow value of the Yangyi high-temperature geothermal field are 6.48 ℃/100 m and 158.37 mW m<sup>−2</sup>, respectively. Combining the hydrothermal tracer experiment, <sup>87</sup>Sr/<sup>86</sup>Sr and δ<sup>11</sup>B ratios obtained with gradually decreasing reservoir temperatures from the Bujiemu stream geothermal zone to Qialagai stream geothermal zone, we suggested the deep geothermal waters were mixed with local cold groundwater and then flow northeastward, forming the shallow reservoir within the crushed zone and intersect spot of faults in the Himalayan granitoid. Furthermore, in the process of ascent, the geothermal water is enriched in K<sup>+</sup>, Na<sup>+</sup>, and HCO<sub>3</sub><sup>−</sup> during the interaction with underlying Himalayan granitoid and pyroclastic rocks that occur as wall rocks. The detailed description and extensive discussion are of great significance for the further exploitation and utilization of north–south trending geothermal belts in Tibet.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00263-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-023-00263-5","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature hydrothermal systems are mainly distributed in the north–south graben systems of southern Tibet as an important part of the Mediterranean–Tethys Himalayan geothermal belt in mainland China. As the largest unit capacity and second stable operating geothermal power station in China, Yangyi is the fracture-controlled type geothermal field in the center of Yadong–Gulu Graben. In this paper, hydrogeological and hydrochemical characteristics, isotope composition (δD and δ18O, 87Sr/86Sr and δ11B) of borehole water, hot springs, and surface river samples were analyzed. From the conservative elements (such as Cl− and Li+) and δD and δ18O values, the geothermal water of the Yangyi high-temperature geothermal field is estimated to be of meteoric origin with the contributions of chemical components of the magmatic fluid, which is provided by partially molten granite as a shallow magmatic heat source. According to logging data, the geothermal gradient and terrestrial heat flow value of the Yangyi high-temperature geothermal field are 6.48 ℃/100 m and 158.37 mW m−2, respectively. Combining the hydrothermal tracer experiment, 87Sr/86Sr and δ11B ratios obtained with gradually decreasing reservoir temperatures from the Bujiemu stream geothermal zone to Qialagai stream geothermal zone, we suggested the deep geothermal waters were mixed with local cold groundwater and then flow northeastward, forming the shallow reservoir within the crushed zone and intersect spot of faults in the Himalayan granitoid. Furthermore, in the process of ascent, the geothermal water is enriched in K+, Na+, and HCO3− during the interaction with underlying Himalayan granitoid and pyroclastic rocks that occur as wall rocks. The detailed description and extensive discussion are of great significance for the further exploitation and utilization of north–south trending geothermal belts in Tibet.
Geothermal EnergyEarth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍:
Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.