{"title":"Hospital surface disinfection using ultraviolet germicidal irradiation technology: A review","authors":"Robert Scott, Lovleen Tina Joshi, Conor McGinn","doi":"10.1049/htl2.12032","DOIUrl":null,"url":null,"abstract":"<p>Ultraviolet germicidal irradiation (UVGI) technologies have emerged as a promising alternative to biocides as a means of surface disinfection in hospitals and other healthcare settings. This paper reviews the methods used by researchers and clinicians in deploying and evaluating the efficacy of UVGI technology. The type of UVGI technology used, the clinical setting where the device was deployed, and the methods of environmental testing that the researchers followed are investigated. The findings suggest that clinical UVGI deployments have been growing steadily since 2010 and have increased dramatically since the start of the COVID-19 pandemic. Hardware platforms and operating procedures vary considerably between studies. Most studies measure efficacy of the technology based on the objective measurement of bacterial bioburden reduction; however, studies conducted over longer durations have examined the impact of UVGI on the reduction of healthcare associated infections (HCAIs). Future trends include increased automation and the use of UVGI technologies that are safer for use around people. Although existing evidence seems to support the efficacy of UVGI as a tool capable of reducing HCAIs, more research is needed to measure the magnitude of these effects and to establish recommended best practices.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"9 3","pages":"25-33"},"PeriodicalIF":2.8000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160814/pdf/","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 15
Abstract
Ultraviolet germicidal irradiation (UVGI) technologies have emerged as a promising alternative to biocides as a means of surface disinfection in hospitals and other healthcare settings. This paper reviews the methods used by researchers and clinicians in deploying and evaluating the efficacy of UVGI technology. The type of UVGI technology used, the clinical setting where the device was deployed, and the methods of environmental testing that the researchers followed are investigated. The findings suggest that clinical UVGI deployments have been growing steadily since 2010 and have increased dramatically since the start of the COVID-19 pandemic. Hardware platforms and operating procedures vary considerably between studies. Most studies measure efficacy of the technology based on the objective measurement of bacterial bioburden reduction; however, studies conducted over longer durations have examined the impact of UVGI on the reduction of healthcare associated infections (HCAIs). Future trends include increased automation and the use of UVGI technologies that are safer for use around people. Although existing evidence seems to support the efficacy of UVGI as a tool capable of reducing HCAIs, more research is needed to measure the magnitude of these effects and to establish recommended best practices.
期刊介绍:
Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.