H. Pontes, L. A. Fernandes, M. S. D. Melo, G. Guimarães, Laís Luana Massuqueto
{"title":"Speleothems in quartz-sandstone caves of Ponta Grossa municipality, Campos Gerais region, Paraná state, southern Brazil","authors":"H. Pontes, L. A. Fernandes, M. S. D. Melo, G. Guimarães, Laís Luana Massuqueto","doi":"10.5038/1827-806x.49.2.2313","DOIUrl":null,"url":null,"abstract":"The present communication characterizes and discusses the genesis of cave speleothems developed in Furnas Formation (Silurian-Devonian) and Vila Velha sub-unit (Campo Mourão Formation, Upper Carboniferous) quartz-sandstones, in southern Brazil. The research, which involved stratigraphic and petrographic studies, was conducted to identify the faciological context of occurrence of these features, and to determine, through different analytical methods, their mineralogical composition and porosity, and also the action of microbial markers on the genesis of these secondary mineral deposits. The speleothems were classified into six types based on form, composition and genesis: (1) arborescent (coral), (2) mushroom-shaped, (3) stalactitic, (4) stalagmitic, (5) columnar with horizontal/ascending growth, and (6) fibrous. In response to substrate permoporosity, speleothems develop on all sandstone facies of the study area, mainly in sites controlled by bedding, stratification and fracturing planes. They are less frequent, however, in conglomerate and silty-clayey layers of the Furnas Formation, being composed mainly of silica (opal-A and cryptocrystalline silica) and kaolinite, with lesser contribution of gypsum and amorphous iron oxides associated with goethite and hematite. Detritic minerals such as quartz and muscovite also take part in the composition of these features. Plant and invertebrate fragments were identified, including biosignatures and microorganisms capable of favoring precipitation of silica (possibly cyanobacteria and diatom) and iron oxide (possibly Gallionella ferruginea). Such biosignatures and extracellular polymeric substances (biofilms) associated with speleothems are evidence of organomineralization, also known as biologically induced mineralization. The results, which indicate biological action on the genesis of speleothems, raise further discussion on the influence of microorganisms on the dissolution and precipitation of silica and kaolinite in the region.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5038/1827-806x.49.2.2313","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
The present communication characterizes and discusses the genesis of cave speleothems developed in Furnas Formation (Silurian-Devonian) and Vila Velha sub-unit (Campo Mourão Formation, Upper Carboniferous) quartz-sandstones, in southern Brazil. The research, which involved stratigraphic and petrographic studies, was conducted to identify the faciological context of occurrence of these features, and to determine, through different analytical methods, their mineralogical composition and porosity, and also the action of microbial markers on the genesis of these secondary mineral deposits. The speleothems were classified into six types based on form, composition and genesis: (1) arborescent (coral), (2) mushroom-shaped, (3) stalactitic, (4) stalagmitic, (5) columnar with horizontal/ascending growth, and (6) fibrous. In response to substrate permoporosity, speleothems develop on all sandstone facies of the study area, mainly in sites controlled by bedding, stratification and fracturing planes. They are less frequent, however, in conglomerate and silty-clayey layers of the Furnas Formation, being composed mainly of silica (opal-A and cryptocrystalline silica) and kaolinite, with lesser contribution of gypsum and amorphous iron oxides associated with goethite and hematite. Detritic minerals such as quartz and muscovite also take part in the composition of these features. Plant and invertebrate fragments were identified, including biosignatures and microorganisms capable of favoring precipitation of silica (possibly cyanobacteria and diatom) and iron oxide (possibly Gallionella ferruginea). Such biosignatures and extracellular polymeric substances (biofilms) associated with speleothems are evidence of organomineralization, also known as biologically induced mineralization. The results, which indicate biological action on the genesis of speleothems, raise further discussion on the influence of microorganisms on the dissolution and precipitation of silica and kaolinite in the region.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.