{"title":"Statistical Distribution Model of Charpy Absorbed Energy in Transition Temperature Range for Reactor Pressure Vessel Steel","authors":"N. Miura, T. Shinko","doi":"10.1115/1.4062674","DOIUrl":null,"url":null,"abstract":"\n A statistical model to estimate the distribution characteristics of Charpy absorbed energy in the transition temperature range was proposed based on the variation in fracture toughness addressed by the Master Curve and the relationship between fracture toughness and Charpy absorbed energy associated with the Charpy Master Curve. Charpy absorbed energy in the transition temperature range can be well approximated by both the Weibull and normal distributions, and the parameters to determine the shape of the distributions (scale and shape parameters of the Weibull distribution, mean and standard deviation of the normal distribution) can be deductively defined as the functions of two independent variables, median of the fracture toughness and the difference between reference temperature and Charpy reference temperature. A series of Charpy impact tests were conducted under the same conditions to obtain the characteristics of the variation in Charpy absorbed energy for a reactor pressure vessel steel SQV2A base metal, and the experimental variation was reasonably predicted by the proposed model.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062674","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A statistical model to estimate the distribution characteristics of Charpy absorbed energy in the transition temperature range was proposed based on the variation in fracture toughness addressed by the Master Curve and the relationship between fracture toughness and Charpy absorbed energy associated with the Charpy Master Curve. Charpy absorbed energy in the transition temperature range can be well approximated by both the Weibull and normal distributions, and the parameters to determine the shape of the distributions (scale and shape parameters of the Weibull distribution, mean and standard deviation of the normal distribution) can be deductively defined as the functions of two independent variables, median of the fracture toughness and the difference between reference temperature and Charpy reference temperature. A series of Charpy impact tests were conducted under the same conditions to obtain the characteristics of the variation in Charpy absorbed energy for a reactor pressure vessel steel SQV2A base metal, and the experimental variation was reasonably predicted by the proposed model.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.