Almost all orbits of the Collatz map attain almost bounded values

IF 2.8 1区 数学 Q1 MATHEMATICS
T. Tao
{"title":"Almost all orbits of the Collatz map attain almost bounded values","authors":"T. Tao","doi":"10.1017/fmp.2022.8","DOIUrl":null,"url":null,"abstract":"Abstract Define the Collatz map \n${\\operatorname {Col}} \\colon \\mathbb {N}+1 \\to \\mathbb {N}+1$\n on the positive integers \n$\\mathbb {N}+1 = \\{1,2,3,\\dots \\}$\n by setting \n${\\operatorname {Col}}(N)$\n equal to \n$3N+1$\n when N is odd and \n$N/2$\n when N is even, and let \n${\\operatorname {Col}}_{\\min }(N) := \\inf _{n \\in \\mathbb {N}} {\\operatorname {Col}}^n(N)$\n denote the minimal element of the Collatz orbit \n$N, {\\operatorname {Col}}(N), {\\operatorname {Col}}^2(N), \\dots $\n . The infamous Collatz conjecture asserts that \n${\\operatorname {Col}}_{\\min }(N)=1$\n for all \n$N \\in \\mathbb {N}+1$\n . Previously, it was shown by Korec that for any \n$\\theta> \\frac {\\log 3}{\\log 4} \\approx 0.7924$\n , one has \n${\\operatorname {Col}}_{\\min }(N) \\leq N^\\theta $\n for almost all \n$N \\in \\mathbb {N}+1$\n (in the sense of natural density). In this paper, we show that for any function \n$f \\colon \\mathbb {N}+1 \\to \\mathbb {R}$\n with \n$\\lim _{N \\to \\infty } f(N)=+\\infty $\n , one has \n${\\operatorname {Col}}_{\\min }(N) \\leq f(N)$\n for almost all \n$N \\in \\mathbb {N}+1$\n (in the sense of logarithmic density). Our proof proceeds by establishing a stabilisation property for a certain first passage random variable associated with the Collatz iteration (or more precisely, the closely related Syracuse iteration), which in turn follows from estimation of the characteristic function of a certain skew random walk on a \n$3$\n -adic cyclic group \n$\\mathbb {Z}/3^n\\mathbb {Z}$\n at high frequencies. This estimation is achieved by studying how a certain two-dimensional renewal process interacts with a union of triangles associated to a given frequency.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2019-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2022.8","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 61

Abstract

Abstract Define the Collatz map ${\operatorname {Col}} \colon \mathbb {N}+1 \to \mathbb {N}+1$ on the positive integers $\mathbb {N}+1 = \{1,2,3,\dots \}$ by setting ${\operatorname {Col}}(N)$ equal to $3N+1$ when N is odd and $N/2$ when N is even, and let ${\operatorname {Col}}_{\min }(N) := \inf _{n \in \mathbb {N}} {\operatorname {Col}}^n(N)$ denote the minimal element of the Collatz orbit $N, {\operatorname {Col}}(N), {\operatorname {Col}}^2(N), \dots $ . The infamous Collatz conjecture asserts that ${\operatorname {Col}}_{\min }(N)=1$ for all $N \in \mathbb {N}+1$ . Previously, it was shown by Korec that for any $\theta> \frac {\log 3}{\log 4} \approx 0.7924$ , one has ${\operatorname {Col}}_{\min }(N) \leq N^\theta $ for almost all $N \in \mathbb {N}+1$ (in the sense of natural density). In this paper, we show that for any function $f \colon \mathbb {N}+1 \to \mathbb {R}$ with $\lim _{N \to \infty } f(N)=+\infty $ , one has ${\operatorname {Col}}_{\min }(N) \leq f(N)$ for almost all $N \in \mathbb {N}+1$ (in the sense of logarithmic density). Our proof proceeds by establishing a stabilisation property for a certain first passage random variable associated with the Collatz iteration (or more precisely, the closely related Syracuse iteration), which in turn follows from estimation of the characteristic function of a certain skew random walk on a $3$ -adic cyclic group $\mathbb {Z}/3^n\mathbb {Z}$ at high frequencies. This estimation is achieved by studying how a certain two-dimensional renewal process interacts with a union of triangles associated to a given frequency.
Collatz映射的几乎所有轨道都达到几乎有界值
在正整数$\mathbb {N}+1 = \{1,2,3,\dots \}$上定义Collatz映射${\operatorname {Col}} \colon \mathbb {N}+1 \to \mathbb {N}+1$,当N为奇数时设置${\operatorname {Col}}(N)$ = $3N+1$,当N为偶数时设置$N/2$,并令${\operatorname {Col}}_{\min }(N) := \inf _{n \in \mathbb {N}} {\operatorname {Col}}^n(N)$表示Collatz轨道$N, {\operatorname {Col}}(N), {\operatorname {Col}}^2(N), \dots $的最小元素。臭名昭著的Collatz猜想断言${\operatorname {Col}}_{\min }(N)=1$对于所有$N \in \mathbb {N}+1$。此前,韩国的研究结果表明,对于任何$\theta> \frac {\log 3}{\log 4} \approx 0.7924$,几乎所有$N \in \mathbb {N}+1$(自然密度意义上的)都有${\operatorname {Col}}_{\min }(N) \leq N^\theta $。在本文中,我们证明了对于任何带有$\lim _{N \to \infty } f(N)=+\infty $的函数$f \colon \mathbb {N}+1 \to \mathbb {R}$,几乎所有的$N \in \mathbb {N}+1$(在对数密度的意义上)都有${\operatorname {Col}}_{\min }(N) \leq f(N)$。我们的证明通过建立与Collatz迭代(或更准确地说,密切相关的Syracuse迭代)相关的某个第一通道随机变量的稳定性质来进行,这反过来又遵循在高频$3$ -adic循环群$\mathbb {Z}/3^n\mathbb {Z}$上的某个偏态随机漫步的特征函数的估计。这种估计是通过研究特定的二维更新过程如何与给定频率相关的三角形并集相互作用来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Pi
Forum of Mathematics Pi Mathematics-Statistics and Probability
CiteScore
3.50
自引率
0.00%
发文量
21
审稿时长
19 weeks
期刊介绍: Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信