Using the Photoluminescence Color Change in Cesium Lead Iodide Nanoparticles to Monitor the Kinetics of an External Organohalide Chemical Reaction by Halide Exchange
Tennyson L. Doane, Kevin J. Cruz, Tsung-Hsing Chiang and Mathew M. Maye*,
{"title":"Using the Photoluminescence Color Change in Cesium Lead Iodide Nanoparticles to Monitor the Kinetics of an External Organohalide Chemical Reaction by Halide Exchange","authors":"Tennyson L. Doane, Kevin J. Cruz, Tsung-Hsing Chiang and Mathew M. Maye*, ","doi":"10.1021/acsnanoscienceau.3c00026","DOIUrl":null,"url":null,"abstract":"<p >In this work, we demonstrate a photoluminescence-based method to monitor the kinetics of an organohalide reaction by way of detecting released bromide ions at cesium lead halide nanoparticles. Small aliquots of the reaction are added to an assay with known concentrations of CsPbI<sub>3</sub>, and the resulting Br-to-I halide exchange (HE) results in rapid and sensitive wavelength blueshifts (Δλ) due to CsPbBr<sub><i>x</i></sub>I<sub>3<i>–x</i></sub> intermediate concentrations, the wavelengths of which are proportional to concentrations. An assay response factor, <i>C</i>, relates Δλ to Br<sup>–</sup> concentration as a function of CsPbI<sub>3</sub> concentration. The observed kinetics, as well as calculated rate constants, equilibrium, and activation energy of the solvolysis reaction tested correspond closely to synthetic literature values, validating the assay. Factors that influence the sensitivity and performance of the assay, such as CsPbI<sub>3</sub> size, morphology, and concentration, are discussed.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 5","pages":"418–423"},"PeriodicalIF":4.8000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00026","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.3c00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we demonstrate a photoluminescence-based method to monitor the kinetics of an organohalide reaction by way of detecting released bromide ions at cesium lead halide nanoparticles. Small aliquots of the reaction are added to an assay with known concentrations of CsPbI3, and the resulting Br-to-I halide exchange (HE) results in rapid and sensitive wavelength blueshifts (Δλ) due to CsPbBrxI3–x intermediate concentrations, the wavelengths of which are proportional to concentrations. An assay response factor, C, relates Δλ to Br– concentration as a function of CsPbI3 concentration. The observed kinetics, as well as calculated rate constants, equilibrium, and activation energy of the solvolysis reaction tested correspond closely to synthetic literature values, validating the assay. Factors that influence the sensitivity and performance of the assay, such as CsPbI3 size, morphology, and concentration, are discussed.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.