Symplectic geometry of p-adic Teichmüller uniformization for ordinary nilpotent indigenous bundles

IF 0.8 Q2 MATHEMATICS
Y. Wakabayashi
{"title":"Symplectic geometry of p-adic Teichmüller\nuniformization for ordinary nilpotent indigenous bundles","authors":"Y. Wakabayashi","doi":"10.2140/tunis.2022.4.203","DOIUrl":null,"url":null,"abstract":"The aim of the present paper is to provide a new aspect of the $p$-adic Teichmuller theory established by S. Mochizuki. We study the symplectic geometry of the $p$-adic formal stacks $\\widehat{\\mathcal{M}}_{g, \\mathbb{Z}_p}$ (= the moduli classifying $p$-adic formal curves of fixed genus $g>1$) and $\\widehat{\\mathcal{S}}_{g, \\mathbb{Z}_p}$ (= the moduli classifying $p$-adic formal curves of genus $g$ equipped with an indigenous bundle). A major achievement in the (classical) $p$-adic Teichmuller theory is the construction of the locus $\\widehat{\\mathcal{N}}_{g, \\mathbb{Z}_p}^{\\mathrm{ord}}$ in $\\widehat{\\mathcal{S}}_{g, \\mathbb{Z}_p}$ classifying $p$-adic canonical liftings of ordinary nilpotent indigenous bundles. The formal stack $\\widehat{\\mathcal{N}}_{g, \\mathbb{Z}_p}^{\\mathrm{ord}}$ embodies a $p$-adic analogue of uniformization of hyperbolic Riemann surfaces, as well as a hyperbolic analogue of Serre-Tate theory of ordinary abelian varieties. In the present paper, the canonical symplectic structure on the cotangent bundle $T^\\vee_{\\mathbb{Z}_p} \\widehat{\\mathcal{M}}_{g, \\mathbb{Z}_p}$ of $\\widehat{\\mathcal{M}}_{g, \\mathbb{Z}_p}$ is compared to Goldman's symplectic structure defined on $\\widehat{\\mathcal{S}}_{g, \\mathbb{Z}_p}$ after base-change by the projection $\\widehat{\\mathcal{N}}_{g, \\mathbb{Z}_p}^{\\mathrm{ord}} \\rightarrow \\widehat{\\mathcal{M}}_{g, \\mathbb{Z}_p}$. We can think of this comparison as a $p$-adic analogue of certain results in the theory of projective structures on Riemann surfaces proved by S. Kawai and other mathematicians.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2022.4.203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of the present paper is to provide a new aspect of the $p$-adic Teichmuller theory established by S. Mochizuki. We study the symplectic geometry of the $p$-adic formal stacks $\widehat{\mathcal{M}}_{g, \mathbb{Z}_p}$ (= the moduli classifying $p$-adic formal curves of fixed genus $g>1$) and $\widehat{\mathcal{S}}_{g, \mathbb{Z}_p}$ (= the moduli classifying $p$-adic formal curves of genus $g$ equipped with an indigenous bundle). A major achievement in the (classical) $p$-adic Teichmuller theory is the construction of the locus $\widehat{\mathcal{N}}_{g, \mathbb{Z}_p}^{\mathrm{ord}}$ in $\widehat{\mathcal{S}}_{g, \mathbb{Z}_p}$ classifying $p$-adic canonical liftings of ordinary nilpotent indigenous bundles. The formal stack $\widehat{\mathcal{N}}_{g, \mathbb{Z}_p}^{\mathrm{ord}}$ embodies a $p$-adic analogue of uniformization of hyperbolic Riemann surfaces, as well as a hyperbolic analogue of Serre-Tate theory of ordinary abelian varieties. In the present paper, the canonical symplectic structure on the cotangent bundle $T^\vee_{\mathbb{Z}_p} \widehat{\mathcal{M}}_{g, \mathbb{Z}_p}$ of $\widehat{\mathcal{M}}_{g, \mathbb{Z}_p}$ is compared to Goldman's symplectic structure defined on $\widehat{\mathcal{S}}_{g, \mathbb{Z}_p}$ after base-change by the projection $\widehat{\mathcal{N}}_{g, \mathbb{Z}_p}^{\mathrm{ord}} \rightarrow \widehat{\mathcal{M}}_{g, \mathbb{Z}_p}$. We can think of this comparison as a $p$-adic analogue of certain results in the theory of projective structures on Riemann surfaces proved by S. Kawai and other mathematicians.
普通幂零原生束p进teichm均匀化的辛几何
本文的目的是为望月建立的一元Teichmuller理论提供一个新的方面。我们研究了$p$-adic形式栈$\widehat{\mathcal{M}}_{g, \mathbb{Z}_p}$(=固定格$g bbbb1 $的分类$p$-adic形式曲线的模)和$\widehat{\mathcal{S}}_{g, \mathbb{Z}_p}$(=带固有束的$g$的分类$p$-adic形式曲线的模)的模几何。(经典)$p$-adic的Teichmuller理论的一个主要成就是构造了$\widehat{\mathcal{N}}_{g, \mathbb{Z}_p}^{\ mathm {ord}}$在$\widehat{\mathcal{S}}_{g, \mathbb{Z}_p}$分类$p$-adic正则提升中的轨迹$\widehat{\mathcal{N}}, $ mathbb{Z}_p}$。形式栈$\widehat{\mathcal{N}}_{g, \mathbb{Z}_p}^{\ mathm {ord}}$体现了双曲黎曼曲面均匀化的$p$-adic模拟,以及普通阿贝尔变的Serre-Tate理论的双曲模拟。本文通过投影$\widehat{\mathcal{M}} g, \mathbb{Z}_p}$,将$\widehat{\mathcal{M}} g, \mathbb{Z}_p}$的协切束$T^\vee_{\mathbb{Z}_p} $上定义的基变换后的$\widehat{\mathcal{S}} g, \mathbb{Z}_p}$上定义的Goldman的正则结构与$\widehat{\mathcal{N}} {g, \mathbb{Z}_p}$上定义的正则结构进行了比较。我们可以把这种比较看作是S. Kawai和其他数学家所证明的黎曼曲面上的投影结构理论中某些结果的$p$-adic类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信