Hierarchy structures in finite index CMC surfaces

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
William H. Meeks III, Joaquín Pérez
{"title":"Hierarchy structures in finite index CMC surfaces","authors":"William H. Meeks III, Joaquín Pérez","doi":"10.1515/acv-2022-0113","DOIUrl":null,"url":null,"abstract":"Abstract Given ε 0 > 0 {{\\varepsilon}_{0}>0} , I ∈ ℕ ∪ { 0 } {I\\in\\mathbb{N}\\cup\\{0\\}} and K 0 , H 0 ≥ 0 {K_{0},H_{0}\\geq 0} , let X be a complete Riemannian 3-manifold with injectivity radius Inj ⁡ ( X ) ≥ ε 0 {\\operatorname{Inj}(X)\\geq{\\varepsilon}_{0}} and with the supremum of absolute sectional curvature at most K 0 {K_{0}} , and let M ↬ X {M\\looparrowright X} be a complete immersed surface of constant mean curvature H ∈ [ 0 , H 0 ] {H\\in[0,H_{0}]} with index at most I. For such M ↬ X {M\\looparrowright X} , we prove a structure theorem which describes how the interesting ambient geometry of the immersion is organized locally around at most I points of M, where the norm of the second fundamental form takes on large local maximum values.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2022-0113","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Given ε 0 > 0 {{\varepsilon}_{0}>0} , I ∈ ℕ ∪ { 0 } {I\in\mathbb{N}\cup\{0\}} and K 0 , H 0 ≥ 0 {K_{0},H_{0}\geq 0} , let X be a complete Riemannian 3-manifold with injectivity radius Inj ⁡ ( X ) ≥ ε 0 {\operatorname{Inj}(X)\geq{\varepsilon}_{0}} and with the supremum of absolute sectional curvature at most K 0 {K_{0}} , and let M ↬ X {M\looparrowright X} be a complete immersed surface of constant mean curvature H ∈ [ 0 , H 0 ] {H\in[0,H_{0}]} with index at most I. For such M ↬ X {M\looparrowright X} , we prove a structure theorem which describes how the interesting ambient geometry of the immersion is organized locally around at most I points of M, where the norm of the second fundamental form takes on large local maximum values.
有限指数CMC曲面的层次结构
给定ε 0 > {{\varepsilon}_{0}b> 0} , I∈∈∪ { 0 } {I\in\mathbb{N}\cupb{0}} K 0, H 0≥0 {k_{0},嗯……{0}\geq 0} ,设X是一个完备的黎曼3流形,注入半径为Inj (X)≥ε 0 {\operatorname{Inj}(x)\geq{\varepsilon}_{0}} 且绝对截面曲率的最大值不超过k0 {k_{0}} ,让M * X {m\looparrowright x} 为平均曲率为H∈[0,H 0]的完全浸没面 {h\in[0,H_{0}]} 对于这样的M * * * X {m\looparrowright x} ,我们证明了一个结构定理,该定理描述了浸入的有趣环境几何是如何在M的最多I个点附近局部组织的,其中第二个基本形式的范数具有较大的局部最大值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信