AKURASI KESAMAAN KELOMPOK DATA BERDASARKAN FCM DAN PCA-FCM PADA DATA GULA DARAH HASIL PEMINDAIAN NIRS TERHADAP DATA GULA DARAH HASIL GLUKOMETER

Euclid Pub Date : 2021-11-23 DOI:10.33603/e.v8i2.3384
Dian Pertiwi
{"title":"AKURASI KESAMAAN KELOMPOK DATA BERDASARKAN FCM DAN PCA-FCM PADA DATA GULA DARAH HASIL PEMINDAIAN NIRS TERHADAP DATA GULA DARAH HASIL GLUKOMETER","authors":"Dian Pertiwi","doi":"10.33603/e.v8i2.3384","DOIUrl":null,"url":null,"abstract":"Diabetes is a metabolic disorder characterized by high blood sugar levels. People with diabetes usually use a glucometer to check blood sugar levels by taking blood samples. Still, another alternative is to check blood sugar levels without using a syringe, the NIRS (Near Infrared Spectroscopy) device. In this study, data were collected using the NIRS device with blood and finger scans on three volunteers and produced the NIRS Blood Sugar Data output in the form of spectrum data. NIRS blood sugar data were grouped based on the similarity of characteristics between these objects using the Fuzzy C-Means (FCM) method. The researcher analyzed NIRS blood sugar data using PCA to reduce variables. So, the researcher only obtains significant variables in the study. Then Clustering was performed on PCA results using FCM. Based on the groups formed in each analysis using FCM and PCA-FCM, the accuracy of the similarity of data from the NIRS scanned Blood Sugar Data cluster to the Glucometer data was sought by comparing the cluster members. After grouping all the data, an accuracy rate of 50% was obtained. It shows that the Blood Sugar Data from the NIRS scan has a reasonably high similarity accuracy to the Glucometer data.","PeriodicalId":32474,"journal":{"name":"Euclid","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Euclid","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33603/e.v8i2.3384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes is a metabolic disorder characterized by high blood sugar levels. People with diabetes usually use a glucometer to check blood sugar levels by taking blood samples. Still, another alternative is to check blood sugar levels without using a syringe, the NIRS (Near Infrared Spectroscopy) device. In this study, data were collected using the NIRS device with blood and finger scans on three volunteers and produced the NIRS Blood Sugar Data output in the form of spectrum data. NIRS blood sugar data were grouped based on the similarity of characteristics between these objects using the Fuzzy C-Means (FCM) method. The researcher analyzed NIRS blood sugar data using PCA to reduce variables. So, the researcher only obtains significant variables in the study. Then Clustering was performed on PCA results using FCM. Based on the groups formed in each analysis using FCM and PCA-FCM, the accuracy of the similarity of data from the NIRS scanned Blood Sugar Data cluster to the Glucometer data was sought by comparing the cluster members. After grouping all the data, an accuracy rate of 50% was obtained. It shows that the Blood Sugar Data from the NIRS scan has a reasonably high similarity accuracy to the Glucometer data.
调查数据的安全性评估FCM和PCA-FCM-PADA数据数据数据数据
糖尿病是一种以高血糖水平为特征的代谢紊乱。糖尿病患者通常使用血糖仪通过采集血液样本来检查血糖水平。尽管如此,另一种选择是在不使用注射器(近红外光谱)设备的情况下检查血糖水平。在这项研究中,使用NIRS设备对三名志愿者进行血液和手指扫描,收集数据,并以光谱数据的形式输出NIRS血糖数据。基于这些对象之间特征的相似性,使用模糊C均值(FCM)方法对NIRS血糖数据进行分组。研究人员使用主成分分析法分析了近红外光谱血糖数据,以减少变量。因此,研究者在研究中只获得显著的变量。然后用FCM对主成分分析结果进行聚类分析。基于使用FCM和PCA-FCM在每次分析中形成的组,通过比较聚类成员来寻求来自NIRS扫描的血糖数据聚类的数据与血糖仪数据的相似性的准确性。在对所有数据进行分组之后,获得了50%的准确率。这表明来自NIRS扫描的血糖数据与血糖仪数据具有相当高的相似精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信