Lessons from the famous 17th‐century paradox of the Chevalier de Méré

IF 1.2 Q2 EDUCATION & EDUCATIONAL RESEARCH
José Daniel López‐Barrientos, Eliud Silva, Enrique Lemus-Rodríguez
{"title":"Lessons from the famous 17th‐century paradox of the Chevalier de Méré","authors":"José Daniel López‐Barrientos, Eliud Silva, Enrique Lemus-Rodríguez","doi":"10.1111/test.12321","DOIUrl":null,"url":null,"abstract":"We take advantage of a combinatorial misconception and the famous paradox of the Chevalier de Méré to present the multiplication rule for independent events; the principle of inclusion and exclusion in the presence of disjoint events; the median of a discrete‐type random variable, and a confidence interval for a large sample. Moreover, we pay tribute to our original bibliographic sources by providing two computational tools to facilitate the students' insights on these topics.","PeriodicalId":43739,"journal":{"name":"Teaching Statistics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teaching Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/test.12321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 1

Abstract

We take advantage of a combinatorial misconception and the famous paradox of the Chevalier de Méré to present the multiplication rule for independent events; the principle of inclusion and exclusion in the presence of disjoint events; the median of a discrete‐type random variable, and a confidence interval for a large sample. Moreover, we pay tribute to our original bibliographic sources by providing two computational tools to facilitate the students' insights on these topics.
著名的17世纪Méré骑士悖论的教训
我们利用组合误解和著名的Méré骑士悖论,提出了独立事件的乘法规则;在出现不连贯事件时的包容和排斥原则;离散型随机变量的中值,以及大样本的置信区间。此外,我们通过提供两个计算工具来促进学生对这些主题的见解,从而向我们的原始书目来源致敬。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Teaching Statistics
Teaching Statistics EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
2.10
自引率
25.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信