Temperature and Hf-O isotope correlations of young erupted zircons from Tengchong (SE Tibet): Assimilation fractional crystallization during monotonic cooling
{"title":"Temperature and Hf-O isotope correlations of young erupted zircons from Tengchong (SE Tibet): Assimilation fractional crystallization during monotonic cooling","authors":"Zipei Guo , Haibo Zou","doi":"10.1016/j.gsf.2022.101497","DOIUrl":null,"url":null,"abstract":"<div><p>Young zircons from crystal-poor volcanic rocks provide the best samples for the investigations of pre-eruption magmatic processes and for testing a possible relationship between zircon Eu anomalies and crustal thickness. We report trace element chemistry and Hf-O isotope compositions of young zircons from 3 Holocene volcanoes in the Tengchong volcanic field, SE Tibet, in order to provide insights into magma evolution processes and conditions for high-K calc-alkaline volcanic rocks in a post-collisional setting. As decreasing zircon Ti content and falling temperature, zircon Hf content and Yb/Sm increase whereas zircon Eu anomaly and Th/U decrease, indicating fractional crystallization of plagioclase and zircon during magma cooling. More importantly, zircon Hf isotope ratio (ε<sub>Hf</sub> values) increases with decreasing zircon Ti content and falling temperature (<em>T</em>), suggesting gradually increasing incorporation of relatively high ε<sub>Hf</sub> juvenile materials in the crystallizing zircons during magma evolution. Negative correlations between zircon ε<sub>Hf</sub> and zircon δ<sup>18</sup>O also support open-system magma evolution. Our data suggest fractional crystallization of a magma with simultaneous contamination by high ε<sub>Hf</sub> and low δ <sup>18</sup>O juvenile (immature) crustal materials during monotonic cooling after zircon saturation. The low-<em>T</em>, high-ε<sub>Hf</sub> and low- δ <sup>18</sup>O zircons may indicate the involvement of the early Cretaceous juvenile granitic country rocks during shallow magma evolution. Average Eu anomalies in zircons from young Tengchong lavas yield crustal thickness of 40.7 ± 6.8 km, consistent with present crustal thickness (42.5 km) determined by geophysical methods.</p></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"14 1","pages":"Article 101497"},"PeriodicalIF":8.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987122001505","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
Young zircons from crystal-poor volcanic rocks provide the best samples for the investigations of pre-eruption magmatic processes and for testing a possible relationship between zircon Eu anomalies and crustal thickness. We report trace element chemistry and Hf-O isotope compositions of young zircons from 3 Holocene volcanoes in the Tengchong volcanic field, SE Tibet, in order to provide insights into magma evolution processes and conditions for high-K calc-alkaline volcanic rocks in a post-collisional setting. As decreasing zircon Ti content and falling temperature, zircon Hf content and Yb/Sm increase whereas zircon Eu anomaly and Th/U decrease, indicating fractional crystallization of plagioclase and zircon during magma cooling. More importantly, zircon Hf isotope ratio (εHf values) increases with decreasing zircon Ti content and falling temperature (T), suggesting gradually increasing incorporation of relatively high εHf juvenile materials in the crystallizing zircons during magma evolution. Negative correlations between zircon εHf and zircon δ18O also support open-system magma evolution. Our data suggest fractional crystallization of a magma with simultaneous contamination by high εHf and low δ 18O juvenile (immature) crustal materials during monotonic cooling after zircon saturation. The low-T, high-εHf and low- δ 18O zircons may indicate the involvement of the early Cretaceous juvenile granitic country rocks during shallow magma evolution. Average Eu anomalies in zircons from young Tengchong lavas yield crustal thickness of 40.7 ± 6.8 km, consistent with present crustal thickness (42.5 km) determined by geophysical methods.
Geoscience frontiersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍:
Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.