{"title":"Effect of Printing Parameters on the Surface Roughness of 3D-Printed Melt-Cast Explosive Substitutes Based on Melt Extrusion Technology.","authors":"Hu-Zeng Zong, Peng Zhang, Jing-Xiao Yao, Ga-Zi Hao, Su-Wei Wang, Guang-Pu Zhang, Hao Ren, Lei Xiao, Wei Jiang","doi":"10.1089/3dp.2022.0245","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the application of 3D printing technology in the energetic materials field has proved its ability to innovate traditional charging methods and fabricate complex structures to improve combustion/detonation performance. The melt extrusion technology is the most promising way to fabricate complex structures and multiple components of melt-cast explosives. In this study, a paraffine-based composite was used to substitute melt-cast explosives, and a Design of Experiments approach based on central composite design was adopted to investigate the influence of layer thickness, percent infill, extrusion temperature, and printing velocity on the roughness of printed samples. The results showed that layer thickness and printing velocity could significantly influence the roughness of printed specimens, and no obvious voids or cracks inside the specimens can be detected in computed tomography. In addition, a composite-shaped grain was successfully fabricated via the EAM-D-1 printer, which proved the feasibility of 3D printing melt-cast explosives with complex structures. This work will greatly help to achieve 3D printing melt-cast explosives with complex structures and higher accuracy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"e1394-e1406"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442192/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the application of 3D printing technology in the energetic materials field has proved its ability to innovate traditional charging methods and fabricate complex structures to improve combustion/detonation performance. The melt extrusion technology is the most promising way to fabricate complex structures and multiple components of melt-cast explosives. In this study, a paraffine-based composite was used to substitute melt-cast explosives, and a Design of Experiments approach based on central composite design was adopted to investigate the influence of layer thickness, percent infill, extrusion temperature, and printing velocity on the roughness of printed samples. The results showed that layer thickness and printing velocity could significantly influence the roughness of printed specimens, and no obvious voids or cracks inside the specimens can be detected in computed tomography. In addition, a composite-shaped grain was successfully fabricated via the EAM-D-1 printer, which proved the feasibility of 3D printing melt-cast explosives with complex structures. This work will greatly help to achieve 3D printing melt-cast explosives with complex structures and higher accuracy.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.