{"title":"Theoretical Analysis of Free Vibration and Transient Response of Rectangular Plate-Cavity System Under Impact Loading","authors":"M. Ji, K. Inaba","doi":"10.1115/1.4062121","DOIUrl":null,"url":null,"abstract":"\n This paper presents a theoretical method to solve the free vibration and transient responses of a rectangular plate-cavity system. The spectral collocation method was used to solve the resonant frequencies and corresponding mode shapes of rectangular plates based on Kirchhoff thin-plate and Mindlin-Reissner thick plate theories. A linear velocity potential function was employed to model the fluid pressure applied to the plate surface. Unlike in previous studies, it was not assumed that the wet-mode shapes were the same as the dry-mode ones. Rather, the wet modes were assumed to be the superposition of the dry modes; then, the resonant frequencies and corresponding mode shapes of the wet modes could be obtained by solving the equations of the coupled system by exploiting the orthogonality of dry modes. Using dry modes' orthogonality and superposition of the wet modes, the transient responses of the rectangular plate-cavity system under impact loading can be solved. A method for estimating the resonant frequencies of the coupled system is proposed based on parametric studies to determine the influence of the fluid properties and plate materials on resonant frequencies. As a result, the resonant frequencies and transient responses obtained from the proposed theoretical methods are in excellent agreement with those obtained finite element analysis.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062121","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a theoretical method to solve the free vibration and transient responses of a rectangular plate-cavity system. The spectral collocation method was used to solve the resonant frequencies and corresponding mode shapes of rectangular plates based on Kirchhoff thin-plate and Mindlin-Reissner thick plate theories. A linear velocity potential function was employed to model the fluid pressure applied to the plate surface. Unlike in previous studies, it was not assumed that the wet-mode shapes were the same as the dry-mode ones. Rather, the wet modes were assumed to be the superposition of the dry modes; then, the resonant frequencies and corresponding mode shapes of the wet modes could be obtained by solving the equations of the coupled system by exploiting the orthogonality of dry modes. Using dry modes' orthogonality and superposition of the wet modes, the transient responses of the rectangular plate-cavity system under impact loading can be solved. A method for estimating the resonant frequencies of the coupled system is proposed based on parametric studies to determine the influence of the fluid properties and plate materials on resonant frequencies. As a result, the resonant frequencies and transient responses obtained from the proposed theoretical methods are in excellent agreement with those obtained finite element analysis.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.