Space of Wijsman \(\mu \)-Deferred Cesàro I-Statistically Convergent of Order (a, b) Set Sequence

IF 0.8 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Vakeel A Khan, Izhar Ali Khan, Bipan Hazarika
{"title":"Space of Wijsman \\(\\mu \\)-Deferred Cesàro I-Statistically Convergent of Order (a, b) Set Sequence","authors":"Vakeel A Khan,&nbsp;Izhar Ali Khan,&nbsp;Bipan Hazarika","doi":"10.1007/s40010-023-00816-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present the notions of Wijsman strongly ideal <span>\\(r-\\)</span>deferred Cesàro summability and Wijsman <span>\\(\\mu \\)</span>-deferred Cesàro <i>I</i>-statistical convergence of order (<i>a</i>, <i>b</i>) allied with modulus function <i>f</i> for a sequence of closed sets of a separable metric space <span>\\((\\mathcal {X},\\rho )\\)</span>. We also define their respective sequence spaces <span>\\( \\left[ {{\\text{DC}}\\left[ {p,q} \\right]_{W}^{{(a,b)}} (r,f)} \\right]^{I} \\)</span> and <span>\\( \\left[ {_{\\mu } {\\text{DS}}\\left[ {p,q} \\right]_{W}^{{(a,b)}} \\left( f \\right)} \\right]^{I} \\)</span>, respectively. We also prove that for <span>\\(a\\le b\\)</span>, the newly formed sequence space is well defined but for <span>\\( a&gt;b \\)</span>, foresaid space is not well defined in general. Some inclusion relation-based results are also established with some counterexamples to support our results. At last, it is shown that if a bounded sequence of closed sets is Wijsman <span>\\(\\mu \\)</span>-deferred Cesàro <i>I</i>-statistical convergence of order (<i>a</i>, <i>b</i>), then it need not be Wijsman strongly ideal <span>\\(r-\\)</span>deferred Cesàro summable.</p></div>","PeriodicalId":744,"journal":{"name":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","volume":"93 2","pages":"321 - 329"},"PeriodicalIF":0.8000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s40010-023-00816-0","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present the notions of Wijsman strongly ideal \(r-\)deferred Cesàro summability and Wijsman \(\mu \)-deferred Cesàro I-statistical convergence of order (ab) allied with modulus function f for a sequence of closed sets of a separable metric space \((\mathcal {X},\rho )\). We also define their respective sequence spaces \( \left[ {{\text{DC}}\left[ {p,q} \right]_{W}^{{(a,b)}} (r,f)} \right]^{I} \) and \( \left[ {_{\mu } {\text{DS}}\left[ {p,q} \right]_{W}^{{(a,b)}} \left( f \right)} \right]^{I} \), respectively. We also prove that for \(a\le b\), the newly formed sequence space is well defined but for \( a>b \), foresaid space is not well defined in general. Some inclusion relation-based results are also established with some counterexamples to support our results. At last, it is shown that if a bounded sequence of closed sets is Wijsman \(\mu \)-deferred Cesàro I-statistical convergence of order (ab), then it need not be Wijsman strongly ideal \(r-\)deferred Cesàro summable.

Wijsman空间\(\mu \) -Deferred Cesàro i - Order (a, b)集合序列的统计收敛性
本文给出了可分离度量空间的闭集序列\((\mathcal {X},\rho )\)的Wijsman强理想\(r-\)递延Cesàro可和性和Wijsman \(\mu \) -递延Cesàro i -与模函数f相关的阶(a, b)统计收敛性的概念。我们还分别定义了它们各自的序列空间\( \left[ {{\text{DC}}\left[ {p,q} \right]_{W}^{{(a,b)}} (r,f)} \right]^{I} \)和\( \left[ {_{\mu } {\text{DS}}\left[ {p,q} \right]_{W}^{{(a,b)}} \left( f \right)} \right]^{I} \)。我们还证明了对于\(a\le b\),新形成的序列空间是定义良好的,而对于\( a>b \),上述空间一般不是定义良好的。建立了一些基于包含关系的结果,并给出了一些反例来支持我们的结果。最后,证明了如果一个闭集有界序列是Wijsman \(\mu \) -deferred Cesàro i -阶(a, b)的统计收敛,则它不必是Wijsman强理想\(r-\) -deferred Cesàro可和的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: To promote research in all the branches of Science & Technology; and disseminate the knowledge and advancements in Science & Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信