{"title":"Contact-Based Passive Thermal Switch with a High Rectification Ratio","authors":"Sampath Kommandur, and , Ravi Anant Kishore*, ","doi":"10.1021/acsengineeringau.2c00046","DOIUrl":null,"url":null,"abstract":"<p >Thermal control devices like diodes, regulators, and switches are essential to achieve directional heat flow for numerous applications, such as electronic systems, energy conversion or storage systems, and equipment for buildings. These devices exhibit a controllable thermal conductance that can be manipulated to allow preferential thermal transport. While several design concepts have existed for decades, they are rarely deployed due to some basic practical limitations related to scalability, cost, operating temperature, and/or requirements for external excitation. In this study, we achieved a fundamental breakthrough in developing a passive thermal switch, which has a simple and scalable design, is thermally driven (thus does not require an external stimulus), and exhibits a rectification ratio of 17.5, which is among the highest value reported for passive switches in the literature. Notably, the switch transitions from an effective thermal conductivity of ∼1.6 W/m-K (insulator) in the OFF state to ∼28 W/m-K (conductor) in the ON state near 50 °C. To demonstrate the cost-effective implementation of our technology at a large scale, we developed a self-regulating insulation panel that automatically varies its thermal resistance by using just a few thermal switches occupying less than 10% of the total surface area. Lastly, using a parametric analysis, we establish a promising pathway to further improve the performance and versatility of the proposed technology.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.2c00046","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.2c00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Thermal control devices like diodes, regulators, and switches are essential to achieve directional heat flow for numerous applications, such as electronic systems, energy conversion or storage systems, and equipment for buildings. These devices exhibit a controllable thermal conductance that can be manipulated to allow preferential thermal transport. While several design concepts have existed for decades, they are rarely deployed due to some basic practical limitations related to scalability, cost, operating temperature, and/or requirements for external excitation. In this study, we achieved a fundamental breakthrough in developing a passive thermal switch, which has a simple and scalable design, is thermally driven (thus does not require an external stimulus), and exhibits a rectification ratio of 17.5, which is among the highest value reported for passive switches in the literature. Notably, the switch transitions from an effective thermal conductivity of ∼1.6 W/m-K (insulator) in the OFF state to ∼28 W/m-K (conductor) in the ON state near 50 °C. To demonstrate the cost-effective implementation of our technology at a large scale, we developed a self-regulating insulation panel that automatically varies its thermal resistance by using just a few thermal switches occupying less than 10% of the total surface area. Lastly, using a parametric analysis, we establish a promising pathway to further improve the performance and versatility of the proposed technology.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)