{"title":"Continuous catalytic aerobic oxidation of o‑chlorotoluene to o-chlorobenzoic acid under slug flow conditions","authors":"Jiming Liu, Linchang Liu, Wei Zhang, Peng Li, Xin Li, Zhiqun Yu, Weike Su","doi":"10.1007/s41981-023-00272-2","DOIUrl":null,"url":null,"abstract":"<div><h2>\nAbstract</h2><div><p>\nA continuous-flow process was developed for the aerobic oxidation of <i>o</i>-chlorotoluene (OCT) to <i>o</i>-chlorobenzoic acid (OCBA) with pure oxygen. Acetic acid as cosolvent and CoBr<sub>2</sub>/MnBr<sub>2</sub> as catalyst, with a small amount of acetaldehyde as the radical initiator to make the reaction rapidly stimulates. Through the regulation of gas–liquid mixing, slug flow obtains similar mass transfer coefficient of annular flow and the reactor volume was further reduced. The reaction parameters were easily controlled by take the advantages of continuous-flow reactor. Under the optimal reaction conditions, the isolated yield of OCBA reached up to 94%. Compared with the traditional batch process, shorter residence time, higher product yield and operation safety are achieved by adapting simple continuous-flow system.\n</p></div></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"13 3","pages":"325 - 335"},"PeriodicalIF":2.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-023-00272-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract
A continuous-flow process was developed for the aerobic oxidation of o-chlorotoluene (OCT) to o-chlorobenzoic acid (OCBA) with pure oxygen. Acetic acid as cosolvent and CoBr2/MnBr2 as catalyst, with a small amount of acetaldehyde as the radical initiator to make the reaction rapidly stimulates. Through the regulation of gas–liquid mixing, slug flow obtains similar mass transfer coefficient of annular flow and the reactor volume was further reduced. The reaction parameters were easily controlled by take the advantages of continuous-flow reactor. Under the optimal reaction conditions, the isolated yield of OCBA reached up to 94%. Compared with the traditional batch process, shorter residence time, higher product yield and operation safety are achieved by adapting simple continuous-flow system.
期刊介绍:
The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.