Microstructural and wear properties of mild steel cladded with AISI 316L stainless steel using pulsed current gas metal arc welding process

Q4 Materials Science
Mani Jayavelu, Srinivasan Kasi, Balasubramanian Visvalingam, Prasanna Nagasai Bellamkonda, Malarvizhi Sudersanan
{"title":"Microstructural and wear properties of mild steel cladded with AISI 316L stainless steel using pulsed current gas metal arc welding process","authors":"Mani Jayavelu, Srinivasan Kasi, Balasubramanian Visvalingam, Prasanna Nagasai Bellamkonda, Malarvizhi Sudersanan","doi":"10.1080/09507116.2023.2169085","DOIUrl":null,"url":null,"abstract":"Abstract The main objective of this study is to study the microstructure and wear resistance of mild steel (MS) of grade IS 2062 that has had an austenitic stainless steel (AISI 316L) coating applied utilizing the pulsed current gas metal arc welding (PC-GMAW) technique. The PC-GMAW method was used to overcome issues with the conventional gas metal arc welding (CC-GMAW) method used for cladding AISI 316L steel over mild steel, such as a larger heat affected zone (HAZ), coarse-grained deposited weld metal microstructure, less penetration depth and higher dilution and reinforcement height. Optical microscopy (OM) was used to examine the microstructural characteristics of the clad region. Using the pin-on-disc testing machine, the wear rate of cladded specimens was recorded, and scanning electron microscopy (SEM) was used to examine the morphology of wear surfaces. The microhardness distribution of the cladded region was examined, and the wear characteristics of the cladded specimens were correlated. According to the findings, PC-GMAW cladding is harder and more resistant to wear than a mild steel substrate. The PC-GMAW cladding exhibited higher weld metal deposition and lower dilution. Weld overlay hardness was 15.83% higher in the PC-GMAW cladding than in the mild steel substrate. The wear rate was decreased by an average of 20.18% as compared to the mild steel substrate with PC-GMAW cladding.","PeriodicalId":23605,"journal":{"name":"Welding International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09507116.2023.2169085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The main objective of this study is to study the microstructure and wear resistance of mild steel (MS) of grade IS 2062 that has had an austenitic stainless steel (AISI 316L) coating applied utilizing the pulsed current gas metal arc welding (PC-GMAW) technique. The PC-GMAW method was used to overcome issues with the conventional gas metal arc welding (CC-GMAW) method used for cladding AISI 316L steel over mild steel, such as a larger heat affected zone (HAZ), coarse-grained deposited weld metal microstructure, less penetration depth and higher dilution and reinforcement height. Optical microscopy (OM) was used to examine the microstructural characteristics of the clad region. Using the pin-on-disc testing machine, the wear rate of cladded specimens was recorded, and scanning electron microscopy (SEM) was used to examine the morphology of wear surfaces. The microhardness distribution of the cladded region was examined, and the wear characteristics of the cladded specimens were correlated. According to the findings, PC-GMAW cladding is harder and more resistant to wear than a mild steel substrate. The PC-GMAW cladding exhibited higher weld metal deposition and lower dilution. Weld overlay hardness was 15.83% higher in the PC-GMAW cladding than in the mild steel substrate. The wear rate was decreased by an average of 20.18% as compared to the mild steel substrate with PC-GMAW cladding.
aisi316l不锈钢包覆低碳钢脉冲电流气体电弧焊的组织与磨损性能
摘要本研究的主要目的是研究采用脉冲电流气体保护焊(PC-GMAW)技术涂覆奥氏体不锈钢(AISI 316L)涂层的is 2062级低碳钢(MS)的微观结构和耐磨性。PC-GMAW方法用于克服传统气体保护金属电弧焊(CC-GMAW)方法在低碳钢上包覆AISI 316L钢时存在的问题,如较大的热影响区(HAZ)、粗晶粒沉积焊缝金属微观结构、较小的熔深以及较高的稀释和补强高度。光学显微镜(OM)用于检测包层区域的微观结构特征。使用销盘试验机记录了镀层试样的磨损率,并用扫描电子显微镜(SEM)检测了磨损表面的形貌。检测了熔覆区的显微硬度分布,并对熔覆试样的磨损特性进行了相关性分析。根据研究结果,PC-GMAW包层比软钢基体更硬,更耐磨。PC-GMAW熔覆层表现出较高的焊缝金属沉积和较低的稀释度。PC-GMAW熔覆层的堆焊层硬度比低碳钢基体高15.83%。与采用PC-GMAW熔覆的低碳钢基体相比,磨损率平均降低了20.18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Welding International
Welding International Materials Science-Metals and Alloys
CiteScore
0.70
自引率
0.00%
发文量
57
期刊介绍: Welding International provides comprehensive English translations of complete articles, selected from major international welding journals, including: Journal of Japan Welding Society - Japan Journal of Light Metal Welding and Construction - Japan Przeglad Spawalnictwa - Poland Quarterly Journal of Japan Welding Society - Japan Revista de Metalurgia - Spain Rivista Italiana della Saldatura - Italy Soldagem & Inspeção - Brazil Svarochnoe Proizvodstvo - Russia Welding International is a well-established and widely respected journal and the translators are carefully chosen with each issue containing a balanced selection of between 15 and 20 articles. The articles cover research techniques, equipment and process developments, applications and material and are not available elsewhere in English. This journal provides a valuable and unique service for those needing to keep up-to-date on the latest developments in welding technology in non-English speaking countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信