A computer-assisted proof of dynamo growth in the stretch-fold-shear map

Pub Date : 2022-12-17 DOI:10.1080/14689367.2022.2139224
Farhana Akond Pramy, Ben Mestel, Robert Hasson, Katrine Rogers
{"title":"A computer-assisted proof of dynamo growth in the stretch-fold-shear map","authors":"Farhana Akond Pramy, Ben Mestel, Robert Hasson, Katrine Rogers","doi":"10.1080/14689367.2022.2139224","DOIUrl":null,"url":null,"abstract":"The Stretch-Fold-Shear (SFS) operator is a functional linear operator acting on complex-valued functions of a real variable x on some domain containing in It arises from a stylized model in kinematic dynamo theory where magnetic field growth corresponds to an eigenvalue of modulus greater than 1. When the shear parameter α is zero, the spectrum of can be determined exactly, and the eigenfunctions corresponding to non-zero eigenvalues are related to the Bernoulli polynomials. The spectrum for has not been rigorously determined although the spectrum has been approximated numerically. In this paper, a computer-assisted proof is presented to provide rigorous bounds on the leading eigenvalue for , showing inter alia that has an eigenvalue of modulus greater than 1 for all α satisfying , thereby partially confirming an outstanding conjecture on the SFS operator.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2139224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Stretch-Fold-Shear (SFS) operator is a functional linear operator acting on complex-valued functions of a real variable x on some domain containing in It arises from a stylized model in kinematic dynamo theory where magnetic field growth corresponds to an eigenvalue of modulus greater than 1. When the shear parameter α is zero, the spectrum of can be determined exactly, and the eigenfunctions corresponding to non-zero eigenvalues are related to the Bernoulli polynomials. The spectrum for has not been rigorously determined although the spectrum has been approximated numerically. In this paper, a computer-assisted proof is presented to provide rigorous bounds on the leading eigenvalue for , showing inter alia that has an eigenvalue of modulus greater than 1 for all α satisfying , thereby partially confirming an outstanding conjecture on the SFS operator.
分享
查看原文
拉伸-褶皱-剪切图中发电机生长的计算机辅助证明
拉伸-折叠-剪切(SFS)算子是一种函数线性算子,作用于包含在中的某个域上的实变量x的复值函数。它源于运动学发电机理论中的一个程式化模型,其中磁场增长对应于大于1的模量本征值。当剪切参数α为零时,可以精确地确定的谱,并且与非零本征值相对应的本征函数与伯努利多项式有关。的频谱尚未严格确定,尽管该频谱已在数值上近似。在本文中,提出了一个计算机辅助证明,为的前导特征值提供了严格的边界,特别表明对于所有α满足,其特征值的模大于1,从而部分证实了关于SFS算子的一个突出猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信