Farhana Akond Pramy, Ben Mestel, Robert Hasson, Katrine Rogers
{"title":"A computer-assisted proof of dynamo growth in the stretch-fold-shear map","authors":"Farhana Akond Pramy, Ben Mestel, Robert Hasson, Katrine Rogers","doi":"10.1080/14689367.2022.2139224","DOIUrl":null,"url":null,"abstract":"The Stretch-Fold-Shear (SFS) operator is a functional linear operator acting on complex-valued functions of a real variable x on some domain containing in It arises from a stylized model in kinematic dynamo theory where magnetic field growth corresponds to an eigenvalue of modulus greater than 1. When the shear parameter α is zero, the spectrum of can be determined exactly, and the eigenfunctions corresponding to non-zero eigenvalues are related to the Bernoulli polynomials. The spectrum for has not been rigorously determined although the spectrum has been approximated numerically. In this paper, a computer-assisted proof is presented to provide rigorous bounds on the leading eigenvalue for , showing inter alia that has an eigenvalue of modulus greater than 1 for all α satisfying , thereby partially confirming an outstanding conjecture on the SFS operator.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2139224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Stretch-Fold-Shear (SFS) operator is a functional linear operator acting on complex-valued functions of a real variable x on some domain containing in It arises from a stylized model in kinematic dynamo theory where magnetic field growth corresponds to an eigenvalue of modulus greater than 1. When the shear parameter α is zero, the spectrum of can be determined exactly, and the eigenfunctions corresponding to non-zero eigenvalues are related to the Bernoulli polynomials. The spectrum for has not been rigorously determined although the spectrum has been approximated numerically. In this paper, a computer-assisted proof is presented to provide rigorous bounds on the leading eigenvalue for , showing inter alia that has an eigenvalue of modulus greater than 1 for all α satisfying , thereby partially confirming an outstanding conjecture on the SFS operator.