A computer-assisted proof of dynamo growth in the stretch-fold-shear map

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
Farhana Akond Pramy, Ben Mestel, Robert Hasson, Katrine Rogers
{"title":"A computer-assisted proof of dynamo growth in the stretch-fold-shear map","authors":"Farhana Akond Pramy, Ben Mestel, Robert Hasson, Katrine Rogers","doi":"10.1080/14689367.2022.2139224","DOIUrl":null,"url":null,"abstract":"The Stretch-Fold-Shear (SFS) operator is a functional linear operator acting on complex-valued functions of a real variable x on some domain containing in It arises from a stylized model in kinematic dynamo theory where magnetic field growth corresponds to an eigenvalue of modulus greater than 1. When the shear parameter α is zero, the spectrum of can be determined exactly, and the eigenfunctions corresponding to non-zero eigenvalues are related to the Bernoulli polynomials. The spectrum for has not been rigorously determined although the spectrum has been approximated numerically. In this paper, a computer-assisted proof is presented to provide rigorous bounds on the leading eigenvalue for , showing inter alia that has an eigenvalue of modulus greater than 1 for all α satisfying , thereby partially confirming an outstanding conjecture on the SFS operator.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"38 1","pages":"102 - 120"},"PeriodicalIF":0.5000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2139224","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The Stretch-Fold-Shear (SFS) operator is a functional linear operator acting on complex-valued functions of a real variable x on some domain containing in It arises from a stylized model in kinematic dynamo theory where magnetic field growth corresponds to an eigenvalue of modulus greater than 1. When the shear parameter α is zero, the spectrum of can be determined exactly, and the eigenfunctions corresponding to non-zero eigenvalues are related to the Bernoulli polynomials. The spectrum for has not been rigorously determined although the spectrum has been approximated numerically. In this paper, a computer-assisted proof is presented to provide rigorous bounds on the leading eigenvalue for , showing inter alia that has an eigenvalue of modulus greater than 1 for all α satisfying , thereby partially confirming an outstanding conjecture on the SFS operator.
拉伸-褶皱-剪切图中发电机生长的计算机辅助证明
拉伸-折叠-剪切(SFS)算子是一种函数线性算子,作用于包含在中的某个域上的实变量x的复值函数。它源于运动学发电机理论中的一个程式化模型,其中磁场增长对应于大于1的模量本征值。当剪切参数α为零时,可以精确地确定的谱,并且与非零本征值相对应的本征函数与伯努利多项式有关。的频谱尚未严格确定,尽管该频谱已在数值上近似。在本文中,提出了一个计算机辅助证明,为的前导特征值提供了严格的边界,特别表明对于所有α满足,其特征值的模大于1,从而部分证实了关于SFS算子的一个突出猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal: •Differential equations •Bifurcation theory •Hamiltonian and Lagrangian dynamics •Hyperbolic dynamics •Ergodic theory •Topological and smooth dynamics •Random dynamical systems •Applications in technology, engineering and natural and life sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信