{"title":"Imparting ultralow lubricity to double-network hydrogels by surface-initiated controlled radical polymerization under ambient conditions","authors":"Kaihuan Zhang, Rok Simic, Nicholas D. Spencer","doi":"10.1016/j.biotri.2021.100161","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogels, especially double-network hydrogels, are attractive candidates as load-bearing biomaterials, e.g., tissue-engineering supports for articular cartilages and bones. In this study, we describe the modification of a double-network hydrogel by the introduction of a third monomer, <em>N</em>-[3-(dimethylamino)propyl]methacrylamide, to the network system, which serves as a reactive site for subsequent interfacial reactions and surface-initiated controlled radical polymerization under ambient conditions. The as-prepared poly(2-(methacryloyloxy)ethyl trimethylammonium chloride) (PMETAC) polyelectrolyte polymer brush-modified DN hydrogel exhibited an ultralow coefficient of friction (0.001–0.004) under high contact pressure—comparable to that of the synovial joint.</p></div>","PeriodicalId":38233,"journal":{"name":"Biotribology","volume":"26 ","pages":"Article 100161"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.biotri.2021.100161","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotribology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352573821000020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 8
Abstract
Hydrogels, especially double-network hydrogels, are attractive candidates as load-bearing biomaterials, e.g., tissue-engineering supports for articular cartilages and bones. In this study, we describe the modification of a double-network hydrogel by the introduction of a third monomer, N-[3-(dimethylamino)propyl]methacrylamide, to the network system, which serves as a reactive site for subsequent interfacial reactions and surface-initiated controlled radical polymerization under ambient conditions. The as-prepared poly(2-(methacryloyloxy)ethyl trimethylammonium chloride) (PMETAC) polyelectrolyte polymer brush-modified DN hydrogel exhibited an ultralow coefficient of friction (0.001–0.004) under high contact pressure—comparable to that of the synovial joint.