Heat, moisture and air transport through clothing textiles

IF 2.1 Q2 MATERIALS SCIENCE, TEXTILES
L. Maduna, A. Patnaik
{"title":"Heat, moisture and air transport through clothing textiles","authors":"L. Maduna, A. Patnaik","doi":"10.1080/00405167.2021.1955524","DOIUrl":null,"url":null,"abstract":"Abstract The body generates sweat and heat that must be removed from the surface of the skin to the outside environment in order to maintain body temperature. The transfer of sweat, heat and air through the fabric is important for the wearer’s comfort. The fabric transports moisture by absorption or wicking processes. Moisture is absorbed by the fabric and when it evaporates it cools the body. Wicking occurs when moisture is transported in between the pores of the fabrics or by capillary action in yarns. Heat transfer involves conduction, convection and radiation and because air movement by convection facilitates the evaporation of sweat, it can make a substantial contribution to causing the body temperature to decrease. Clothing impairs the transfer of heat and moisture from the skin surface to the external environment. Restricting heat transfer to the external environment helps to keep the wearer warm but excessive accumulation of moisture causes clothing to stick to the skin, while the accumulation of heat causes heat stress making the wearer feel uncomfortable. Moisture, heat and air transmission are affected by fibres, fabrics and finishing properties and hydrophilic fibres absorb more moisture than lipophilic fibres. Rapid transportation of sweat and heat helps the body to cool down and the wearer to feel comfortable but protective clothing tends to have lower moisture, heat and air transmission and as a result the accumulation of moisture and heat makes them uncomfortable to wear. Traditional methods of evaluating the effects of moisture, heat and air transmission by clothing use bench-top tests on flat fabric, however, the more-recent use of manikins enables consideration to be taken of body shape as well as fit of the garments.","PeriodicalId":45059,"journal":{"name":"TEXTILE PROGRESS","volume":"52 1","pages":"129 - 166"},"PeriodicalIF":2.1000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEXTILE PROGRESS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00405167.2021.1955524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract The body generates sweat and heat that must be removed from the surface of the skin to the outside environment in order to maintain body temperature. The transfer of sweat, heat and air through the fabric is important for the wearer’s comfort. The fabric transports moisture by absorption or wicking processes. Moisture is absorbed by the fabric and when it evaporates it cools the body. Wicking occurs when moisture is transported in between the pores of the fabrics or by capillary action in yarns. Heat transfer involves conduction, convection and radiation and because air movement by convection facilitates the evaporation of sweat, it can make a substantial contribution to causing the body temperature to decrease. Clothing impairs the transfer of heat and moisture from the skin surface to the external environment. Restricting heat transfer to the external environment helps to keep the wearer warm but excessive accumulation of moisture causes clothing to stick to the skin, while the accumulation of heat causes heat stress making the wearer feel uncomfortable. Moisture, heat and air transmission are affected by fibres, fabrics and finishing properties and hydrophilic fibres absorb more moisture than lipophilic fibres. Rapid transportation of sweat and heat helps the body to cool down and the wearer to feel comfortable but protective clothing tends to have lower moisture, heat and air transmission and as a result the accumulation of moisture and heat makes them uncomfortable to wear. Traditional methods of evaluating the effects of moisture, heat and air transmission by clothing use bench-top tests on flat fabric, however, the more-recent use of manikins enables consideration to be taken of body shape as well as fit of the garments.
热、湿和空气通过服装纺织品输送
人体会产生汗液和热量,为了保持体温,必须将汗液和热量从皮肤表面排出到外界环境。汗液、热量和空气通过织物的传递对穿着者的舒适度很重要。织物通过吸湿或排汗过程来输送水分。水分被织物吸收,当它蒸发时,它会给身体降温。当水分在织物的毛孔之间或通过纱线中的毛细作用被输送时,就会发生排汗。热传递包括传导、对流和辐射,由于对流的空气运动促进了汗液的蒸发,它可以在很大程度上导致体温降低。衣服会阻碍热量和水分从皮肤表面向外界环境的传递。限制热量传递到外部环境有助于保持穿着者的温暖,但过多的水分积累会导致衣服粘在皮肤上,而热量的积累会导致热应激,使穿着者感到不舒服。水分、热量和空气的传递受到纤维、织物和整理性能的影响,亲水纤维比亲脂纤维吸收更多的水分。汗水和热量的快速运输有助于身体降温,穿着者感到舒适,但防护服往往具有较低的水分,热量和空气传递,因此水分和热量的积累使它们穿着不舒服。评估衣服对湿气、热量和空气传递的影响的传统方法是在平织物上进行台架试验,然而,最近使用的人体模型可以考虑到人体形状以及服装的合身性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
TEXTILE PROGRESS
TEXTILE PROGRESS MATERIALS SCIENCE, TEXTILES-
CiteScore
4.90
自引率
6.70%
发文量
1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信