{"title":"Bending analysis of functionally graded sandwich beams with general boundary conditions using a modified Fourier series method","authors":"Yu Pu, Shuming Jia, Yang Luo, Shuanhu Shi","doi":"10.1007/s00419-023-02474-5","DOIUrl":null,"url":null,"abstract":"<div><p>A modified Fourier method and six-parameter constrained model are employed to investigate the static bending characteristics of functionally graded sandwich beams under classical and non-classical boundary conditions based on the first-order shear deformation theory. Three types of sandwich beams including isotropic hardcore, functionally graded core, and isotropic softcore are considered. The effective material properties of functionally graded materials are assumed to vary according to power law distribution of volume fraction of constituents by Voigt model. The governing equations and boundary conditions are derived from the principle of minimum potential energy and are solved using the modified Fourier series method which includes the standard Fourier cosine series together with two auxiliary polynomials terms. The high convergence rate, availability and accuracy of the formulation are verified by comparisons with results of other methods. Moreover, numerous new bending results for functionally graded sandwich beams with general boundary conditions are presented. The significant effects of various boundary conditions, different types of sandwich beams, power-law index, span-to-height ratio and skin–core-skin thickness ratio on the displacements, axial stresses, and shear stresses of the sandwich beams with symmetrical and unsymmetrical forms are also investigated.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"93 9","pages":"3741 - 3760"},"PeriodicalIF":2.2000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-023-02474-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
A modified Fourier method and six-parameter constrained model are employed to investigate the static bending characteristics of functionally graded sandwich beams under classical and non-classical boundary conditions based on the first-order shear deformation theory. Three types of sandwich beams including isotropic hardcore, functionally graded core, and isotropic softcore are considered. The effective material properties of functionally graded materials are assumed to vary according to power law distribution of volume fraction of constituents by Voigt model. The governing equations and boundary conditions are derived from the principle of minimum potential energy and are solved using the modified Fourier series method which includes the standard Fourier cosine series together with two auxiliary polynomials terms. The high convergence rate, availability and accuracy of the formulation are verified by comparisons with results of other methods. Moreover, numerous new bending results for functionally graded sandwich beams with general boundary conditions are presented. The significant effects of various boundary conditions, different types of sandwich beams, power-law index, span-to-height ratio and skin–core-skin thickness ratio on the displacements, axial stresses, and shear stresses of the sandwich beams with symmetrical and unsymmetrical forms are also investigated.
期刊介绍:
Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.