Recurrent neural network optimization for wind turbine condition prognosis

Q3 Engineering
Diagnostyka Pub Date : 2022-06-27 DOI:10.29354/diag/151608
Kerboua Adlen, Kelaiaia Ridha
{"title":"Recurrent neural network optimization for wind turbine condition prognosis","authors":"Kerboua Adlen, Kelaiaia Ridha","doi":"10.29354/diag/151608","DOIUrl":null,"url":null,"abstract":"This research focuses on employing Recurrent Neural Networks (RNN) to prognosis a wind turbine operation’s health from collected vibration time series data, by using several memory cell variations, including Long Short Time Memory (LSTM), Bilateral LSTM (BiLSTM), and Gated Recurrent Unit (GRU), which are integrated into various architectures. We tune the training hyperparameters as well as the adapted depth and recurrent cell number of the proposed networks to obtain the most accurate predictions. Tuning those parameters is a hard task and depends widely on the experience of the designer. This can be resolved by integrating the training process in a Bayesian optimization loop where the loss is considered as the objective function to minimize. The obtained results show the effectiveness of the proposed method, which generates more accurate recurrent models with a more accurate prognosis of the operating state of the wind turbine than those generated using trivial training parameters.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/151608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

This research focuses on employing Recurrent Neural Networks (RNN) to prognosis a wind turbine operation’s health from collected vibration time series data, by using several memory cell variations, including Long Short Time Memory (LSTM), Bilateral LSTM (BiLSTM), and Gated Recurrent Unit (GRU), which are integrated into various architectures. We tune the training hyperparameters as well as the adapted depth and recurrent cell number of the proposed networks to obtain the most accurate predictions. Tuning those parameters is a hard task and depends widely on the experience of the designer. This can be resolved by integrating the training process in a Bayesian optimization loop where the loss is considered as the objective function to minimize. The obtained results show the effectiveness of the proposed method, which generates more accurate recurrent models with a more accurate prognosis of the operating state of the wind turbine than those generated using trivial training parameters.
风机状态预测的递归神经网络优化
本研究的重点是使用递归神经网络(RNN),通过使用几种存储单元变体,包括长短时间记忆(LSTM)、双向LSTM(BiLSTM)和门控递归单元(GRU),从收集的振动时间序列数据中预测风机运行的健康状况,这些存储单元集成到各种架构中。我们调整所提出的网络的训练超参数以及自适应深度和循环小区数,以获得最准确的预测。调整这些参数是一项艰巨的任务,并且在很大程度上取决于设计者的经验。这可以通过在贝叶斯优化循环中集成训练过程来解决,其中损失被认为是最小化的目标函数。所获得的结果表明了所提出的方法的有效性,该方法生成了更准确的递归模型,与使用琐碎训练参数生成的模型相比,对风力涡轮机的运行状态具有更准确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Diagnostyka
Diagnostyka Engineering-Mechanical Engineering
CiteScore
2.20
自引率
0.00%
发文量
41
期刊介绍: Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信