Sensitivity, local stable/unstable sets and shadowing

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
Mayara Antunes, B. Carvalho, Margoth Tacuri
{"title":"Sensitivity, local stable/unstable sets and shadowing","authors":"Mayara Antunes, B. Carvalho, Margoth Tacuri","doi":"10.1080/14689367.2023.2206545","DOIUrl":null,"url":null,"abstract":"In this paper, we study local stable/unstable sets of sensitive homeomorphisms with the shadowing property defined on compact metric spaces. We prove that local stable/unstable sets always contain a compact and perfect subset of the space. As a corollary, we generalize results in [Artigue et al. Beyond topological hyperbolicity: the Lshadowing property, J. Differ. Equ. 268(6) (2020), pp. 3057–3080.] and [Carvalho and Cordeiro, Positively N-expansive homeomorphisms and the L-shadowing property, J. Dyn. Differ. Equ. 31(2) (2019), pp. 1005–1016.] proving that positively countably expansive homeomorphisms defined on compact metric spaces satisfying either transitivity and the shadowing property, or the L-shadowing property, can only be defined in countable spaces.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"38 1","pages":"477 - 489"},"PeriodicalIF":0.5000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2206545","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we study local stable/unstable sets of sensitive homeomorphisms with the shadowing property defined on compact metric spaces. We prove that local stable/unstable sets always contain a compact and perfect subset of the space. As a corollary, we generalize results in [Artigue et al. Beyond topological hyperbolicity: the Lshadowing property, J. Differ. Equ. 268(6) (2020), pp. 3057–3080.] and [Carvalho and Cordeiro, Positively N-expansive homeomorphisms and the L-shadowing property, J. Dyn. Differ. Equ. 31(2) (2019), pp. 1005–1016.] proving that positively countably expansive homeomorphisms defined on compact metric spaces satisfying either transitivity and the shadowing property, or the L-shadowing property, can only be defined in countable spaces.
灵敏度,局部稳定/不稳定集和阴影
本文研究了在紧致度量空间上具有遮蔽性质的敏感同胚的局部稳定/不稳定集。我们证明了局部稳定/不稳定集总是包含空间的紧致和完美子集。作为推论,我们推广了[Artigue等人超越拓扑双曲性:L阴影性质,J.Differ.Equ.268(6)(2020),pp.3057-3080]和[Carvalho和Cordeiro,正N扩张同胚和L阴影性质。Dyn。相异等于。31(2)(2019),pp.1005–1016.]证明了在满足传递性和遮蔽性质或L-遮蔽性质的紧致度量空间上定义的正可数扩张同胚只能在可数空间中定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal: •Differential equations •Bifurcation theory •Hamiltonian and Lagrangian dynamics •Hyperbolic dynamics •Ergodic theory •Topological and smooth dynamics •Random dynamical systems •Applications in technology, engineering and natural and life sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信