{"title":"Sensitivity, local stable/unstable sets and shadowing","authors":"Mayara Antunes, B. Carvalho, Margoth Tacuri","doi":"10.1080/14689367.2023.2206545","DOIUrl":null,"url":null,"abstract":"In this paper, we study local stable/unstable sets of sensitive homeomorphisms with the shadowing property defined on compact metric spaces. We prove that local stable/unstable sets always contain a compact and perfect subset of the space. As a corollary, we generalize results in [Artigue et al. Beyond topological hyperbolicity: the Lshadowing property, J. Differ. Equ. 268(6) (2020), pp. 3057–3080.] and [Carvalho and Cordeiro, Positively N-expansive homeomorphisms and the L-shadowing property, J. Dyn. Differ. Equ. 31(2) (2019), pp. 1005–1016.] proving that positively countably expansive homeomorphisms defined on compact metric spaces satisfying either transitivity and the shadowing property, or the L-shadowing property, can only be defined in countable spaces.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"38 1","pages":"477 - 489"},"PeriodicalIF":0.5000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2206545","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we study local stable/unstable sets of sensitive homeomorphisms with the shadowing property defined on compact metric spaces. We prove that local stable/unstable sets always contain a compact and perfect subset of the space. As a corollary, we generalize results in [Artigue et al. Beyond topological hyperbolicity: the Lshadowing property, J. Differ. Equ. 268(6) (2020), pp. 3057–3080.] and [Carvalho and Cordeiro, Positively N-expansive homeomorphisms and the L-shadowing property, J. Dyn. Differ. Equ. 31(2) (2019), pp. 1005–1016.] proving that positively countably expansive homeomorphisms defined on compact metric spaces satisfying either transitivity and the shadowing property, or the L-shadowing property, can only be defined in countable spaces.
期刊介绍:
Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal:
•Differential equations
•Bifurcation theory
•Hamiltonian and Lagrangian dynamics
•Hyperbolic dynamics
•Ergodic theory
•Topological and smooth dynamics
•Random dynamical systems
•Applications in technology, engineering and natural and life sciences