Chemical composition and source attribution of PM2.5 and PM10 in Delhi-National Capital Region (NCR) of India: results from an extensive seasonal campaign

IF 3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Moqtik Bawase, Yogesh Sathe, Hemant Khandaskar, Sukrut Thipse
{"title":"Chemical composition and source attribution of PM2.5 and PM10 in Delhi-National Capital Region (NCR) of India: results from an extensive seasonal campaign","authors":"Moqtik Bawase,&nbsp;Yogesh Sathe,&nbsp;Hemant Khandaskar,&nbsp;Sukrut Thipse","doi":"10.1007/s10874-020-09412-7","DOIUrl":null,"url":null,"abstract":"<p>Ambient particulate matter concentrations in Delhi and its peripheral towns has been a matter of serious concern in the last decade. Understanding the changing nature of the chemical composition of particulates, their spatial and seasonal variability can be utilized for identifying probable sources. This study presents an extensive dataset of the chemical composition of PM<sub>2.5</sub> and PM<sub>10</sub> collected using speciation samplers, from 19 locations representing different activities and spread across Delhi–NCR during summer and winter seasons in the year 2016–17. Identification of contributing sources using chemical ratios as source indicators is attempted. A distinct seasonal variability in both PM<sub>2.5</sub> and PM<sub>10</sub> was observed, with winter maxima and summer minima. The fine fraction i.e. PM<sub>2.5</sub> was dominated by organic matter (OM) with mean concentrations of 40.96±25.74?μg/m<sup>3</sup> followed by Sulfate-Nitrate-Ammonium (SNA) ions (31.44±20.69?μg/m<sup>3</sup>) and Elemental Carbon (EC) (19.56±12.57?μg/m<sup>3</sup>); while the coarse fraction i.e. PM<sub>10</sub> was dominated by OM (73.03±40.55?μg/m<sup>3</sup>) and SNA (47.25±30.56?μg/m<sup>3</sup>) along with significant contributions from crustal materials (40.85±18.89?μg/m<sup>3</sup>). The chemical ratios suggested mixed sources of PM with major contributions from vehicular emissions, re-suspended and/or construction dust, and fossil fuel combustion along with intermittent contributions from biomass and open waste burning. This analysis provides useful insights into the sources and processes affecting the particulate formation and underlines the need to control primary emissions as well as secondary precursors for air quality improvements in the region. The data generated under this campaign can also serve as an essential input for further evaluation using receptor modeling.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 1","pages":"35 - 58"},"PeriodicalIF":3.0000,"publicationDate":"2021-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09412-7","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-020-09412-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 11

Abstract

Ambient particulate matter concentrations in Delhi and its peripheral towns has been a matter of serious concern in the last decade. Understanding the changing nature of the chemical composition of particulates, their spatial and seasonal variability can be utilized for identifying probable sources. This study presents an extensive dataset of the chemical composition of PM2.5 and PM10 collected using speciation samplers, from 19 locations representing different activities and spread across Delhi–NCR during summer and winter seasons in the year 2016–17. Identification of contributing sources using chemical ratios as source indicators is attempted. A distinct seasonal variability in both PM2.5 and PM10 was observed, with winter maxima and summer minima. The fine fraction i.e. PM2.5 was dominated by organic matter (OM) with mean concentrations of 40.96±25.74?μg/m3 followed by Sulfate-Nitrate-Ammonium (SNA) ions (31.44±20.69?μg/m3) and Elemental Carbon (EC) (19.56±12.57?μg/m3); while the coarse fraction i.e. PM10 was dominated by OM (73.03±40.55?μg/m3) and SNA (47.25±30.56?μg/m3) along with significant contributions from crustal materials (40.85±18.89?μg/m3). The chemical ratios suggested mixed sources of PM with major contributions from vehicular emissions, re-suspended and/or construction dust, and fossil fuel combustion along with intermittent contributions from biomass and open waste burning. This analysis provides useful insights into the sources and processes affecting the particulate formation and underlines the need to control primary emissions as well as secondary precursors for air quality improvements in the region. The data generated under this campaign can also serve as an essential input for further evaluation using receptor modeling.

Abstract Image

印度德里-国家首都地区(NCR) PM2.5和PM10的化学成分和来源归属:广泛季节性运动的结果
在过去十年里,德里及其周边城镇的环境颗粒物浓度一直是一个令人严重担忧的问题。了解颗粒化学成分的变化性质,以及它们的空间和季节变化,可用于确定可能的来源。本研究提供了一个广泛的PM2.5和PM10化学成分数据集,该数据集使用物种样本收集,来自2016-17年夏季和冬季期间代表不同活动的19个地点,分布在德里- ncr。尝试使用化学比率作为来源指标来识别贡献源。PM2.5和PM10均有明显的季节变化,冬季最大,夏季最小。细颗粒物PM2.5以有机质(OM)为主,平均浓度为40.96±25.74?其次是硫酸盐-硝酸盐-铵离子(SNA)(31.44±20.69 μg/m3)和单质碳(EC)(19.56±12.57 μg/m3);粗粒PM10以有机质(73.03±40.55 μg/m3)和SNA(47.25±30.56 μg/m3)为主,地壳物质(40.85±18.89 μg/m3)贡献较大。化学比例表明,PM的来源混合,主要来自车辆排放,再悬浮和/或建筑粉尘,化石燃料燃烧以及生物质和露天废物燃烧的间歇性贡献。这一分析对影响颗粒形成的来源和过程提供了有用的见解,并强调需要控制一次排放以及二级前体,以改善该区域的空气质量。在该活动下产生的数据也可以作为使用受体建模进行进一步评估的基本输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Atmospheric Chemistry
Journal of Atmospheric Chemistry 地学-环境科学
CiteScore
4.60
自引率
5.00%
发文量
16
审稿时长
7.5 months
期刊介绍: The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics: Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only. The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere. Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere. Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信