{"title":"Quantum simulation of quantum many-body systems with ultracold two-electron atoms in an optical lattice","authors":"Y. Takahashi","doi":"10.2183/pjab.98.010","DOIUrl":null,"url":null,"abstract":"Ultracold atoms in an optical lattice provide a unique approach to study quantum many-body systems, previously only possible by using condensed-matter experimental systems. This new approach, often called quantum simulation, becomes possible because of the high controllability of the system parameters and the inherent cleanness without lattice defects and impurities. In this article, we review recent developments in this rapidly growing field of ultracold atoms in an optical lattice, with special focus on quantum simulations using our newly created quantum many-body system of two-electron atoms of ytterbium. In addition, we also mention other interesting possibilities offered by this novel experimental platform, such as applications to precision measurements for studying fundamental physics and a Rydberg atom quantum computation.","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"98 1","pages":"141 - 160"},"PeriodicalIF":4.4000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.2183/pjab.98.010","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 5
Abstract
Ultracold atoms in an optical lattice provide a unique approach to study quantum many-body systems, previously only possible by using condensed-matter experimental systems. This new approach, often called quantum simulation, becomes possible because of the high controllability of the system parameters and the inherent cleanness without lattice defects and impurities. In this article, we review recent developments in this rapidly growing field of ultracold atoms in an optical lattice, with special focus on quantum simulations using our newly created quantum many-body system of two-electron atoms of ytterbium. In addition, we also mention other interesting possibilities offered by this novel experimental platform, such as applications to precision measurements for studying fundamental physics and a Rydberg atom quantum computation.
期刊介绍:
The Proceedings of the Japan Academy Ser. B (PJA-B) is a scientific publication of the Japan Academy with a 90-year history, and covers all branches of natural sciences, except for mathematics, which is covered by the PJA-A. It is published ten times a year and is distributed widely throughout the world and can be read and obtained free of charge through the world wide web.