Study on the nonuniform mechanical degradation of membranes considering temperature and relative humidity distribution in proton exchange membrane fuel cells
{"title":"Study on the nonuniform mechanical degradation of membranes considering temperature and relative humidity distribution in proton exchange membrane fuel cells","authors":"Wenqing Liu, Diankai Qiu, Linfa Peng, Xinmin Lai","doi":"10.1002/fuce.202200214","DOIUrl":null,"url":null,"abstract":"<p>The membrane usually breaks down at a specific local position due to the mechanical degradation caused by nonuniform hygrothermal conditions in proton exchange membrane fuel cells. Many studies have been carried out analyzing the stress and strain on membrane along thickness direction, but few of them considered the stress along the surface. By imposing uneven temperature and water profiles according to experiments and simulation, this study systematically investigated effects of varying temperatures, relative humidity, and gas flow directions on the membrane stress/strain in a comprehensive 3D model. The results proved that nonuniform temperature and water content affect the response of the membrane a lot. Although the membrane at the inlet of the flow field suffers higher stress, the membrane at the outlet is easier to fail because higher humidity leads to lower yield stress. For the operating condition, the stress range of cells under the counter-flow reactant gas is 0.2 MPa less than those under co-flow direction. And increasing humidity to near-saturated condition would reduce the stress range from 1.2 to 0.49 MPa. The study contributes to achieving better fatigue resistance for membranes in terms of controlling anisotropic heat and relative humidity for fuel cells.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202200214","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1
Abstract
The membrane usually breaks down at a specific local position due to the mechanical degradation caused by nonuniform hygrothermal conditions in proton exchange membrane fuel cells. Many studies have been carried out analyzing the stress and strain on membrane along thickness direction, but few of them considered the stress along the surface. By imposing uneven temperature and water profiles according to experiments and simulation, this study systematically investigated effects of varying temperatures, relative humidity, and gas flow directions on the membrane stress/strain in a comprehensive 3D model. The results proved that nonuniform temperature and water content affect the response of the membrane a lot. Although the membrane at the inlet of the flow field suffers higher stress, the membrane at the outlet is easier to fail because higher humidity leads to lower yield stress. For the operating condition, the stress range of cells under the counter-flow reactant gas is 0.2 MPa less than those under co-flow direction. And increasing humidity to near-saturated condition would reduce the stress range from 1.2 to 0.49 MPa. The study contributes to achieving better fatigue resistance for membranes in terms of controlling anisotropic heat and relative humidity for fuel cells.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.