Microwave torrefaction of empty fruit bunch pellet: Simulation and validation of electric field and temperature distribution

IF 20.2 Q1 MATERIALS SCIENCE, PAPER & WOOD
Peter Nai Yuh Yek , Sieng Huat Kong , Ming Chiat Law , Changlei Xia , Rock Keey Liew , Teck Sung Sie , Jun Wei Lim , Su Shiung Lam
{"title":"Microwave torrefaction of empty fruit bunch pellet: Simulation and validation of electric field and temperature distribution","authors":"Peter Nai Yuh Yek ,&nbsp;Sieng Huat Kong ,&nbsp;Ming Chiat Law ,&nbsp;Changlei Xia ,&nbsp;Rock Keey Liew ,&nbsp;Teck Sung Sie ,&nbsp;Jun Wei Lim ,&nbsp;Su Shiung Lam","doi":"10.1016/j.jobab.2022.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Microwave simulation is significant in identifying a reactor design allowing the biomass to be heated and processed evenly. This study integrated the radio frequency and transient heat transfer modules to simulate the microwave distribution and investigated the performance of microwave heating in the cavity. The simulation results were compared with the experimental findings using the finite element analysis software of COMSOL MULTIPHYSICS to predict the temperature profile and electric field of microwave in the biomass (empty fruit bunch pellets). The higher temperature distribution was observed at the bottom and centre section of the empty fruit bunch pellet bed in the reactor, showing the uniqueness of microwave heating. According to the simulation results, the temperature profile obtained through the specific cavity geometry and dielectric properties agreed with the experimental temperature profile. The simulated temperature profile demonstrated a logarithmic increase of 120 °C/min at the first 50 s followed by 50 °C/min until 350 s. The experimental temperature profile showed three different heating rates before reaching 300 °C, including 78.3 °C/min (50–120 °C), 30.6 °C/min (121–250 °C), and 105 °C/min (250–300 °C). The results of this study might contribute to the improvement of microwave heating in biomass torrefaction.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"7 4","pages":"Pages 270-277"},"PeriodicalIF":20.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S236996982200055X/pdfft?md5=209589673b798a0041a3b434b74249ff&pid=1-s2.0-S236996982200055X-main.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioresources and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S236996982200055X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 6

Abstract

Microwave simulation is significant in identifying a reactor design allowing the biomass to be heated and processed evenly. This study integrated the radio frequency and transient heat transfer modules to simulate the microwave distribution and investigated the performance of microwave heating in the cavity. The simulation results were compared with the experimental findings using the finite element analysis software of COMSOL MULTIPHYSICS to predict the temperature profile and electric field of microwave in the biomass (empty fruit bunch pellets). The higher temperature distribution was observed at the bottom and centre section of the empty fruit bunch pellet bed in the reactor, showing the uniqueness of microwave heating. According to the simulation results, the temperature profile obtained through the specific cavity geometry and dielectric properties agreed with the experimental temperature profile. The simulated temperature profile demonstrated a logarithmic increase of 120 °C/min at the first 50 s followed by 50 °C/min until 350 s. The experimental temperature profile showed three different heating rates before reaching 300 °C, including 78.3 °C/min (50–120 °C), 30.6 °C/min (121–250 °C), and 105 °C/min (250–300 °C). The results of this study might contribute to the improvement of microwave heating in biomass torrefaction.

微波加热空果束颗粒:电场和温度分布的模拟与验证
微波模拟对于确定一种能够使生物质均匀加热和处理的反应器设计具有重要意义。本研究结合射频和瞬态传热模块,模拟微波在腔内的分布,研究微波在腔内的加热性能。利用COMSOL MULTIPHYSICS有限元分析软件,将模拟结果与实验结果进行对比,预测了生物质(空果束颗粒)中微波的温度分布和电场。空果束球团床底部和中部温度分布较高,显示了微波加热的独特性。模拟结果表明,通过特定腔体几何形状和介电性质得到的温度分布与实验温度分布吻合。模拟的温度曲线显示,在前50秒以120°C/min的对数增长,然后以50°C/min的速度增长,直到350 s。实验温度曲线显示300℃前的三种不同升温速率,分别为78.3℃/min(50 ~ 120℃)、30.6℃/min(121 ~ 250℃)和105℃/min(250 ~ 300℃)。本研究的结果可能有助于改进微波加热在生物质焙烧中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bioresources and Bioproducts
Journal of Bioresources and Bioproducts Agricultural and Biological Sciences-Forestry
CiteScore
39.30
自引率
0.00%
发文量
38
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信