Inhalation of PM2.5 from diesel exhaust promote impairment of mitochondrial bioenergetics and dysregulate mitochondrial quality in rat heart: implications in isoproterenol-induced myocardial infarction model
{"title":"Inhalation of PM2.5 from diesel exhaust promote impairment of mitochondrial bioenergetics and dysregulate mitochondrial quality in rat heart: implications in isoproterenol-induced myocardial infarction model","authors":"B. Sivakumar, G. Kurian","doi":"10.1080/08958378.2022.2049931","DOIUrl":null,"url":null,"abstract":"Abstract Aim: Ambient exposure of PM2.5 from diesel exhaust (termed as diesel particulate matter [DPM]) can induce cardiotoxicity that can be manifested into myocardial ischemia/infarction, where the survival depends on mitochondrial function. The mechanism for DPM-induced mitochondrial dysfunction is yet to be elucidated and the consequential impact of impaired mitochondria on the severity of myocardial infarction (MI) has not been established. Materials and methods: Female Wistar rats were exposed to DPM (0.5 mg/ml) for 3 h daily (to achieve a PM2.5 concentration of 250 µg/m3) for 21 d trailed by an induction of MI using isoproterenol (ISO). Conclusion: DPM exposure altered the basal ECG pattern and increased heart weight (HW) to body weight (BW) ratio from control. Loss of mitochondrial quality in the cardiac tissue was observed in DPM exposed animals, measured via declined ETC enzyme activity, reduced ATP levels, high oxidative stress, low mitochondrial copy number, and low expression of the mitochondrial genes involved in mitophagy (PINK and PARKIN) and mitochondrial fusion (MFN-1). Subsequent induction of MI in DPM exposed animals (DPM + ISO) further deteriorated the normal sinus rhythm, accompanied by elevated plasma CK and LDH level, increased myocardial caspase activity, downregulation of Peroxisome proliferator-activated receptor-gamma coactivator (PGC1-α), transcription factor A (TFAM), DNA polymerase subunit gamma (POLG), and other mitochondrial quality control genes. Based on these results, we conclude that DPM alters the electrophysiology and ultrastructure of the heart that aggravates the MI-induced cardiotoxicity, where the diminished mitochondrial quality can be the potential contributor.","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":"34 1","pages":"107 - 119"},"PeriodicalIF":2.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inhalation Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08958378.2022.2049931","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Aim: Ambient exposure of PM2.5 from diesel exhaust (termed as diesel particulate matter [DPM]) can induce cardiotoxicity that can be manifested into myocardial ischemia/infarction, where the survival depends on mitochondrial function. The mechanism for DPM-induced mitochondrial dysfunction is yet to be elucidated and the consequential impact of impaired mitochondria on the severity of myocardial infarction (MI) has not been established. Materials and methods: Female Wistar rats were exposed to DPM (0.5 mg/ml) for 3 h daily (to achieve a PM2.5 concentration of 250 µg/m3) for 21 d trailed by an induction of MI using isoproterenol (ISO). Conclusion: DPM exposure altered the basal ECG pattern and increased heart weight (HW) to body weight (BW) ratio from control. Loss of mitochondrial quality in the cardiac tissue was observed in DPM exposed animals, measured via declined ETC enzyme activity, reduced ATP levels, high oxidative stress, low mitochondrial copy number, and low expression of the mitochondrial genes involved in mitophagy (PINK and PARKIN) and mitochondrial fusion (MFN-1). Subsequent induction of MI in DPM exposed animals (DPM + ISO) further deteriorated the normal sinus rhythm, accompanied by elevated plasma CK and LDH level, increased myocardial caspase activity, downregulation of Peroxisome proliferator-activated receptor-gamma coactivator (PGC1-α), transcription factor A (TFAM), DNA polymerase subunit gamma (POLG), and other mitochondrial quality control genes. Based on these results, we conclude that DPM alters the electrophysiology and ultrastructure of the heart that aggravates the MI-induced cardiotoxicity, where the diminished mitochondrial quality can be the potential contributor.
期刊介绍:
Inhalation Toxicology is a peer-reviewed publication providing a key forum for the latest accomplishments and advancements in concepts, approaches, and procedures presently being used to evaluate the health risk associated with airborne chemicals.
The journal publishes original research, reviews, symposia, and workshop topics involving the respiratory system’s functions in health and disease, the pathogenesis and mechanism of injury, the extrapolation of animal data to humans, the effects of inhaled substances on extra-pulmonary systems, as well as reliable and innovative models for predicting human disease.