Fabrication and Mechanical Properties of Chitosan/FHA Scaffolds

IF 2 4区 工程技术 Q3 ENGINEERING, CHEMICAL
M. Salehi, S. Molzemi
{"title":"Fabrication and Mechanical Properties of Chitosan/FHA Scaffolds","authors":"M. Salehi, S. Molzemi","doi":"10.1155/2023/2758621","DOIUrl":null,"url":null,"abstract":"Fluor-hydroxyapatite (FHA) is a biomaterial with dental and orthopedic potential that is highly regarded as a result of bioactivity and high biocompatibility. Chitosan is used as a growth promoting agent in the tissues of the tooth and bone. Composite scaffold from these biomaterials is used as a pattern of natural bone and tooth grafts in tissue engineering. In this study FHA was synthesized through coprecipitation method. Then chitosan/FHA composites with different amounts of FHA (15 and 30 wt%) were prepared via freeze drying way. Structural and physical characteristics of the scaffolds were determined by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) spectra, and morphological properties of the scaffolds were investigated using SEM evaluation. The compressive strength, water-uptake capacity, and biodegradation behavior of scaffolds were performed, as well. The results indicated that chitosan/30%FHA scaffold showed more compressive strength, lower biodegradation in phosphate buffer solution after 4 weeks. Therefore, it might be a suitable scaffold for tooth engineering.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/2758621","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fluor-hydroxyapatite (FHA) is a biomaterial with dental and orthopedic potential that is highly regarded as a result of bioactivity and high biocompatibility. Chitosan is used as a growth promoting agent in the tissues of the tooth and bone. Composite scaffold from these biomaterials is used as a pattern of natural bone and tooth grafts in tissue engineering. In this study FHA was synthesized through coprecipitation method. Then chitosan/FHA composites with different amounts of FHA (15 and 30 wt%) were prepared via freeze drying way. Structural and physical characteristics of the scaffolds were determined by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) spectra, and morphological properties of the scaffolds were investigated using SEM evaluation. The compressive strength, water-uptake capacity, and biodegradation behavior of scaffolds were performed, as well. The results indicated that chitosan/30%FHA scaffold showed more compressive strength, lower biodegradation in phosphate buffer solution after 4 weeks. Therefore, it might be a suitable scaffold for tooth engineering.
壳聚糖/FHA支架的制备及力学性能研究
氟羟基磷灰石(FHA)是一种具有牙科和骨科潜力的生物材料,由于其生物活性和高生物相容性而备受推崇。壳聚糖被用作牙齿和骨骼组织中的生长促进剂。由这些生物材料制成的复合支架在组织工程中被用作天然骨和牙齿移植物的一种模式。本研究采用共沉淀法合成FHA。然后加入不同FHA量的壳聚糖/FHA复合材料(15和30 wt%)。通过粉末X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)测定了支架的结构和物理特性,并通过SEM评价了支架的形态特性。对支架的抗压强度、吸水能力和生物降解性能进行了测试。结果表明,壳聚糖/30%FHA支架在磷酸盐缓冲溶液中4周后具有较高的抗压强度和较低的生物降解性。因此,它可能是一种适合牙齿工程的支架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Polymer Technology
Advances in Polymer Technology 工程技术-高分子科学
CiteScore
5.50
自引率
0.00%
发文量
70
审稿时长
9 months
期刊介绍: Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信