Christine Anlanger, Katrin Attermeyer, Sandra Hille, Norbert Kamjunke, Katinka Koll, Manuela König, Ingo Schnauder, Claudia Nogueira Tavares, Markus Weitere, Mario Brauns
{"title":"Large wood in river restoration: A case study on the effects on hydromorphology, biodiversity, and ecosystem functioning","authors":"Christine Anlanger, Katrin Attermeyer, Sandra Hille, Norbert Kamjunke, Katinka Koll, Manuela König, Ingo Schnauder, Claudia Nogueira Tavares, Markus Weitere, Mario Brauns","doi":"10.1002/iroh.202102089","DOIUrl":null,"url":null,"abstract":"<p>Large wood (LW) is an integral part of natural river ecosystems and determines their ecological integrity by modulating hydromorphology and providing habitats. Hence, LW installations are a common restoration measure in large rivers, even if effects on biodiversity are ambiguous or unknown for ecosystem functioning. Here we quantified the hydromorphological, biological, and functional effects of LW 8 months after installation in a large gravel-bed river. Both morphological and flow diversity increased strongly by 821% and 127%, respectively. Similarly, fish abundance increased nearly 10-fold, and macroinvertebrate diversity increased by 35%. Ecosystem functions benefited from LW installation and increased significantly (e.g., by up to 390% for bacterial production) at sites influenced by LW compared to those without LW. Our results highlight the role of the bark habitat of LW that increased the direct effects of LW via the provision of new habitat and stimulated ecosystem-wide processes. Our integrative approach evaluating the success of LW installations in a large river revealed cascading effects from the provisioning of new habitats, the increase of species diversity to higher ecosystem functioning. It also demonstrated that hydromorphological parameters or community composition alone are insufficient to quantify the complex effects of LW installation, which underlines the necessity to evaluate restoration success with different measures.</p>","PeriodicalId":54928,"journal":{"name":"International Review of Hydrobiology","volume":"107 1-2","pages":"34-45"},"PeriodicalIF":0.9000,"publicationDate":"2022-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/iroh.202102089","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Hydrobiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/iroh.202102089","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Large wood (LW) is an integral part of natural river ecosystems and determines their ecological integrity by modulating hydromorphology and providing habitats. Hence, LW installations are a common restoration measure in large rivers, even if effects on biodiversity are ambiguous or unknown for ecosystem functioning. Here we quantified the hydromorphological, biological, and functional effects of LW 8 months after installation in a large gravel-bed river. Both morphological and flow diversity increased strongly by 821% and 127%, respectively. Similarly, fish abundance increased nearly 10-fold, and macroinvertebrate diversity increased by 35%. Ecosystem functions benefited from LW installation and increased significantly (e.g., by up to 390% for bacterial production) at sites influenced by LW compared to those without LW. Our results highlight the role of the bark habitat of LW that increased the direct effects of LW via the provision of new habitat and stimulated ecosystem-wide processes. Our integrative approach evaluating the success of LW installations in a large river revealed cascading effects from the provisioning of new habitats, the increase of species diversity to higher ecosystem functioning. It also demonstrated that hydromorphological parameters or community composition alone are insufficient to quantify the complex effects of LW installation, which underlines the necessity to evaluate restoration success with different measures.
期刊介绍:
As human populations grow across the planet, water security, biodiversity loss and the loss of aquatic ecosystem services take on ever increasing priority for policy makers. International Review of Hydrobiology brings together in one forum fundamental and problem-oriented research on the challenges facing marine and freshwater biology in an economically changing world. Interdisciplinary in nature, articles cover all aspects of aquatic ecosystems, ranging from headwater streams to the ocean and biodiversity studies to ecosystem functioning, modeling approaches including GIS and resource management, with special emphasis on the link between marine and freshwater environments. The editors expressly welcome research on baseline data. The knowledge-driven papers will interest researchers, while the problem-driven articles will be of particular interest to policy makers. The overarching aim of the journal is to translate science into policy, allowing us to understand global systems yet act on a regional scale.
International Review of Hydrobiology publishes original articles, reviews, short communications, and methods papers.