The 0:1 resonance bifurcation associated with the supercritical Hamiltonian pitchfork bifurcation

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
Xing Zhou
{"title":"The 0:1 resonance bifurcation associated with the supercritical Hamiltonian pitchfork bifurcation","authors":"Xing Zhou","doi":"10.1080/14689367.2023.2194521","DOIUrl":null,"url":null,"abstract":"We consider the non-semisimple 0:1 resonance (i.e. the unperturbed equilibrium has two purely imaginary eigenvalues ( and ) and a non-semisimple double-zero one) Hamiltonian bifurcation with one distinguished parameter, which corresponds to the supercritical Hamiltonian pitchfork bifurcation. Based on BCKV singularity theory established by [H.W. Broer, S. -N. Chow, Y. Kim, and G. Vegter, A normally elliptic Hamiltonian bifurcation, Z. Angew. Math. Phys. 44 (3) (1993), pp. 389–432], this bifurcation essentially triggered by the reversible universal unfolding with respect to BCKV-restricted morphisms of the planar non-semisimple singularity (the is regarded as distinguished parameter with respect to the external parameter λ). We first give the plane bifurcation diagram of the integrable Hamiltonian on each level of integral in detail, which is related to the usual supercritical Hamiltonian pitchfork bifurcation. Then, we use the -symmetry generated by the additional pair of imaginary eigenvalues to reconstruct the above plane bifurcation phenomenon caused by the zero eigenvalue pair into the case with two degrees of freedom. Finally, we prove the persistence of typical bifurcation scenarios (e.g. 2-dimensional invariant tori and the symmetric homoclinic orbit) under the small Hamiltonian perturbations, as proposed by [H.W. Broer, S. -N. Chow, Y. Kim, and G. Vegter, A normally elliptic Hamiltonian bifurcation, Z. Angew. Math. Phys. 44 (3) (1993), pp. 389–432]. An example system (the coupled Duffing oscillator) with strong linear coupling and weak local nonlinearity is given for this bifurcation.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"38 1","pages":"427 - 452"},"PeriodicalIF":0.5000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2194521","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the non-semisimple 0:1 resonance (i.e. the unperturbed equilibrium has two purely imaginary eigenvalues ( and ) and a non-semisimple double-zero one) Hamiltonian bifurcation with one distinguished parameter, which corresponds to the supercritical Hamiltonian pitchfork bifurcation. Based on BCKV singularity theory established by [H.W. Broer, S. -N. Chow, Y. Kim, and G. Vegter, A normally elliptic Hamiltonian bifurcation, Z. Angew. Math. Phys. 44 (3) (1993), pp. 389–432], this bifurcation essentially triggered by the reversible universal unfolding with respect to BCKV-restricted morphisms of the planar non-semisimple singularity (the is regarded as distinguished parameter with respect to the external parameter λ). We first give the plane bifurcation diagram of the integrable Hamiltonian on each level of integral in detail, which is related to the usual supercritical Hamiltonian pitchfork bifurcation. Then, we use the -symmetry generated by the additional pair of imaginary eigenvalues to reconstruct the above plane bifurcation phenomenon caused by the zero eigenvalue pair into the case with two degrees of freedom. Finally, we prove the persistence of typical bifurcation scenarios (e.g. 2-dimensional invariant tori and the symmetric homoclinic orbit) under the small Hamiltonian perturbations, as proposed by [H.W. Broer, S. -N. Chow, Y. Kim, and G. Vegter, A normally elliptic Hamiltonian bifurcation, Z. Angew. Math. Phys. 44 (3) (1993), pp. 389–432]. An example system (the coupled Duffing oscillator) with strong linear coupling and weak local nonlinearity is given for this bifurcation.
与超临界哈密顿干草叉分岔相关的0:1共振分岔
我们考虑具有一个可分辨参数的非半简单0:1共振(即非摄动平衡具有两个纯虚特征值(和)和一个非半简单双零1)哈密顿分岔,它对应于超临界哈密顿干草叉分岔。基于[H.W.布罗尔,s.n。周,金,G.维特,一个正常椭圆的哈密顿分岔,Z. Angew。数学。[物理学报,44 (3)(1993),pp. 389-432],这种分岔本质上是由平面非半单奇点的bckv限制态射的可逆普遍展开引发的(该被视为相对于外部参数λ的区分参数)。首先详细地给出了可积哈密顿量在每一级积分上的平面分岔图,这与通常的超临界哈密顿量的草叉分岔有关。然后,我们利用额外的虚特征值对产生的-对称性,将上述由零特征值对引起的平面分岔现象重构为两个自由度的情况。最后,我们证明了典型的分岔情形(如二维不变环面和对称同斜轨道)在小哈密顿扰动下的持久性布罗尔,s.n。周,金,G.维特,一个正常椭圆的哈密顿分岔,Z. Angew。数学。物理学44 (3)(1993),pp. 389-432。给出了一个具有强线性耦合和弱局部非线性的耦合Duffing振子实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal: •Differential equations •Bifurcation theory •Hamiltonian and Lagrangian dynamics •Hyperbolic dynamics •Ergodic theory •Topological and smooth dynamics •Random dynamical systems •Applications in technology, engineering and natural and life sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信