{"title":"Holomorphic anomaly equation for $({\\mathbb P}^2,E)$ and the Nekrasov-Shatashvili limit of local ${\\mathbb P}^2$","authors":"Pierrick Bousseau, H. Fan, Shuai Guo, Longting Wu","doi":"10.1017/fmp.2021.3","DOIUrl":null,"url":null,"abstract":"Abstract We prove a higher genus version of the genus $0$ local-relative correspondence of van Garrel-Graber-Ruddat: for $(X,D)$ a pair with X a smooth projective variety and D a nef smooth divisor, maximal contact Gromov-Witten theory of $(X,D)$ with $\\lambda _g$-insertion is related to Gromov-Witten theory of the total space of ${\\mathcal O}_X(-D)$ and local Gromov-Witten theory of D. Specializing to $(X,D)=(S,E)$ for S a del Pezzo surface or a rational elliptic surface and E a smooth anticanonical divisor, we show that maximal contact Gromov-Witten theory of $(S,E)$ is determined by the Gromov-Witten theory of the Calabi-Yau 3-fold ${\\mathcal O}_S(-E)$ and the stationary Gromov-Witten theory of the elliptic curve E. Specializing further to $S={\\mathbb P}^2$, we prove that higher genus generating series of maximal contact Gromov-Witten invariants of $({\\mathbb P}^2,E)$ are quasimodular and satisfy a holomorphic anomaly equation. The proof combines the quasimodularity results and the holomorphic anomaly equations previously known for local ${\\mathbb P}^2$ and the elliptic curve. Furthermore, using the connection between maximal contact Gromov-Witten invariants of $({\\mathbb P}^2,E)$ and Betti numbers of moduli spaces of semistable one-dimensional sheaves on ${\\mathbb P}^2$, we obtain a proof of the quasimodularity and holomorphic anomaly equation predicted in the physics literature for the refined topological string free energy of local ${\\mathbb P}^2$ in the Nekrasov-Shatashvili limit.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/fmp.2021.3","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2021.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 7
Abstract
Abstract We prove a higher genus version of the genus $0$ local-relative correspondence of van Garrel-Graber-Ruddat: for $(X,D)$ a pair with X a smooth projective variety and D a nef smooth divisor, maximal contact Gromov-Witten theory of $(X,D)$ with $\lambda _g$-insertion is related to Gromov-Witten theory of the total space of ${\mathcal O}_X(-D)$ and local Gromov-Witten theory of D. Specializing to $(X,D)=(S,E)$ for S a del Pezzo surface or a rational elliptic surface and E a smooth anticanonical divisor, we show that maximal contact Gromov-Witten theory of $(S,E)$ is determined by the Gromov-Witten theory of the Calabi-Yau 3-fold ${\mathcal O}_S(-E)$ and the stationary Gromov-Witten theory of the elliptic curve E. Specializing further to $S={\mathbb P}^2$, we prove that higher genus generating series of maximal contact Gromov-Witten invariants of $({\mathbb P}^2,E)$ are quasimodular and satisfy a holomorphic anomaly equation. The proof combines the quasimodularity results and the holomorphic anomaly equations previously known for local ${\mathbb P}^2$ and the elliptic curve. Furthermore, using the connection between maximal contact Gromov-Witten invariants of $({\mathbb P}^2,E)$ and Betti numbers of moduli spaces of semistable one-dimensional sheaves on ${\mathbb P}^2$, we obtain a proof of the quasimodularity and holomorphic anomaly equation predicted in the physics literature for the refined topological string free energy of local ${\mathbb P}^2$ in the Nekrasov-Shatashvili limit.