Holomorphic anomaly equation for $({\mathbb P}^2,E)$ and the Nekrasov-Shatashvili limit of local ${\mathbb P}^2$

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Pierrick Bousseau, H. Fan, Shuai Guo, Longting Wu
{"title":"Holomorphic anomaly equation for $({\\mathbb P}^2,E)$ and the Nekrasov-Shatashvili limit of local ${\\mathbb P}^2$","authors":"Pierrick Bousseau, H. Fan, Shuai Guo, Longting Wu","doi":"10.1017/fmp.2021.3","DOIUrl":null,"url":null,"abstract":"Abstract We prove a higher genus version of the genus $0$ local-relative correspondence of van Garrel-Graber-Ruddat: for $(X,D)$ a pair with X a smooth projective variety and D a nef smooth divisor, maximal contact Gromov-Witten theory of $(X,D)$ with $\\lambda _g$-insertion is related to Gromov-Witten theory of the total space of ${\\mathcal O}_X(-D)$ and local Gromov-Witten theory of D. Specializing to $(X,D)=(S,E)$ for S a del Pezzo surface or a rational elliptic surface and E a smooth anticanonical divisor, we show that maximal contact Gromov-Witten theory of $(S,E)$ is determined by the Gromov-Witten theory of the Calabi-Yau 3-fold ${\\mathcal O}_S(-E)$ and the stationary Gromov-Witten theory of the elliptic curve E. Specializing further to $S={\\mathbb P}^2$, we prove that higher genus generating series of maximal contact Gromov-Witten invariants of $({\\mathbb P}^2,E)$ are quasimodular and satisfy a holomorphic anomaly equation. The proof combines the quasimodularity results and the holomorphic anomaly equations previously known for local ${\\mathbb P}^2$ and the elliptic curve. Furthermore, using the connection between maximal contact Gromov-Witten invariants of $({\\mathbb P}^2,E)$ and Betti numbers of moduli spaces of semistable one-dimensional sheaves on ${\\mathbb P}^2$, we obtain a proof of the quasimodularity and holomorphic anomaly equation predicted in the physics literature for the refined topological string free energy of local ${\\mathbb P}^2$ in the Nekrasov-Shatashvili limit.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/fmp.2021.3","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2021.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract We prove a higher genus version of the genus $0$ local-relative correspondence of van Garrel-Graber-Ruddat: for $(X,D)$ a pair with X a smooth projective variety and D a nef smooth divisor, maximal contact Gromov-Witten theory of $(X,D)$ with $\lambda _g$-insertion is related to Gromov-Witten theory of the total space of ${\mathcal O}_X(-D)$ and local Gromov-Witten theory of D. Specializing to $(X,D)=(S,E)$ for S a del Pezzo surface or a rational elliptic surface and E a smooth anticanonical divisor, we show that maximal contact Gromov-Witten theory of $(S,E)$ is determined by the Gromov-Witten theory of the Calabi-Yau 3-fold ${\mathcal O}_S(-E)$ and the stationary Gromov-Witten theory of the elliptic curve E. Specializing further to $S={\mathbb P}^2$, we prove that higher genus generating series of maximal contact Gromov-Witten invariants of $({\mathbb P}^2,E)$ are quasimodular and satisfy a holomorphic anomaly equation. The proof combines the quasimodularity results and the holomorphic anomaly equations previously known for local ${\mathbb P}^2$ and the elliptic curve. Furthermore, using the connection between maximal contact Gromov-Witten invariants of $({\mathbb P}^2,E)$ and Betti numbers of moduli spaces of semistable one-dimensional sheaves on ${\mathbb P}^2$, we obtain a proof of the quasimodularity and holomorphic anomaly equation predicted in the physics literature for the refined topological string free energy of local ${\mathbb P}^2$ in the Nekrasov-Shatashvili limit.
$({\mathbb P}^2,E)$的全纯异常方程和局部${\math bb P}^2的Nekrasov-Shatashvili极限$
摘要证明了van Garrel-Graber-Ruddat的格$0$局部相对对应的一个高格版本:对于$(X,D)$ a对,其中X是光滑投影变量,D是nef光滑因子,$(X,D)$与$\lambda _g$插入的最大接触Gromov-Witten理论与${\mathcal O}_X(-D)$的总空间的Gromov-Witten理论和D的局部Gromov-Witten理论有关。对于S a del Pezzo曲面或有理椭圆曲面,E是光滑反正则因子,专门讨论$(X,D)=(S,E)$。我们证明了$(S,E)$的极大接触Gromov-Witten理论是由Calabi-Yau 3-fold ${\ mathbb P}^2$的平稳Gromov-Witten理论和$({\mathbb P}^2,E)$的极大接触Gromov-Witten不变量的高格生成级数是准模的,满足全纯异常方程。该证明结合了准模性结果和先前已知的局部${\mathbb P}^2$和椭圆曲线的全纯异常方程。进一步,利用$({\mathbb P}^2,E)$的最大接触Gromov-Witten不变量与${\mathbb P}^2$上半稳定一维束模空间的Betti数之间的联系,证明了物理文献中预测的局部${\mathbb P}^2$的精化拓扑弦自由能在Nekrasov-Shatashvili极限下的准模性和全纯异常方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信