Hano van Eck, S. J. van der Spuy, T. von Backström
{"title":"Development of a one-dimensional code for the initial design of a micro gas turbine mixed flow compressor stage","authors":"Hano van Eck, S. J. van der Spuy, T. von Backström","doi":"10.1515/tjj-2022-0008","DOIUrl":null,"url":null,"abstract":"Abstract The use of micro gas turbines (MGTs) for once-off and unique applications means that a rapid turnaround design process is required. The development of a MATLAB® application-based program for the initial design and performance analysis of radial and mixed flow compressors is discussed. The program code is based on one dimensional (1D) mean line flow and loss model theory. For verification, 18 test compressors were developed, covering a wide range of design velocities, mass flow rates and meridional exit angles. Predicted performance results were verified using Numeca/FINE™ Turbo software. Initial comparisons between 1D and Computational Fluid Dynamics (CFD) results did not match well. The 1D software over-predicted compressor performance and provided poor choke prediction. Consequently, empirical models to correct these deviations were derived and implemented into the 1D Application code. The updated 1D code provided a mean choke prediction difference of 1.59% compared to an initial 14.98% difference at the design point. Mean total-to-total isentropic efficiency and pressure ratio reduced to differences of 0.74 and 1.24% from values of 11.23 and 9.31% respectively.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2022-0008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract The use of micro gas turbines (MGTs) for once-off and unique applications means that a rapid turnaround design process is required. The development of a MATLAB® application-based program for the initial design and performance analysis of radial and mixed flow compressors is discussed. The program code is based on one dimensional (1D) mean line flow and loss model theory. For verification, 18 test compressors were developed, covering a wide range of design velocities, mass flow rates and meridional exit angles. Predicted performance results were verified using Numeca/FINE™ Turbo software. Initial comparisons between 1D and Computational Fluid Dynamics (CFD) results did not match well. The 1D software over-predicted compressor performance and provided poor choke prediction. Consequently, empirical models to correct these deviations were derived and implemented into the 1D Application code. The updated 1D code provided a mean choke prediction difference of 1.59% compared to an initial 14.98% difference at the design point. Mean total-to-total isentropic efficiency and pressure ratio reduced to differences of 0.74 and 1.24% from values of 11.23 and 9.31% respectively.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.