Biorisk Management and Antibiotic Susceptibility Pattern of Biofilm producing Pseudomonas aeruginosa Isolated from Broiler Chicken: A Public Health Concern
{"title":"Biorisk Management and Antibiotic Susceptibility Pattern of Biofilm producing Pseudomonas aeruginosa Isolated from Broiler Chicken: A Public Health Concern","authors":"Shahab Mehmood, Kashif Ali, A. Bashir, Neha Farid, Kiran Fatima, Sheeba Naz","doi":"10.53560/ppasb(60-3)866","DOIUrl":null,"url":null,"abstract":"Control of biosecurity and biosecurity within poultry consists of a set of practical measures meant to prevent and control the spread of disease between people and animals. Infections, caused mainly by zoonotic agents, occur frequently due to the lack of safety monitoring regulations, as well as the inappropriate use of antimicrobial products, leading to the emergence of antimicrobial-resistant microorganisms. Pseudomonas aeruginosa, often known as the MDR pathogen has evolved resistance to multiple antibiotics. Because of its propensity to build biofilms in meat and other food products, P. aeruginosa is even more resilient to the phenomenon of drug resistance which is a major public health issue. Standard microbiological and biochemical tests were used to isolate and identify P. aeruginosa from a total of 100 meat samples (20 from each district from broiler chicken meat) gathered from various butcher shops and supermarkets. The Kirby Bauer method was used to identify antibiotic resistance, while the microtiter plate test was used to monitor biofilm formation. It was found that P. aeruginosa was identified from 22% of the broiler chicken meat samples and showed resistance to Cloxacillin, teicoplanin, ciprofloxacin, imipenem, and meropenem, followed by linezolid, streptomycin, amikacin, compound sulphonamide, aztreonam and cefepime which showed intermediate resistance. Multiple Antibiotic Resistance Index (MARI) was calculated as 0.45 for a total of 11 antibiotics. Also, all 22 MDR isolates of P. aeruginosa tested positive for the presence of the biofilm. In conclusion, it was determined that chicken meat was contaminated with Pseudomonas aeruginosa, and these strains that produce biofilms are more resistant to antibiotics. Thus, there is a serious threat to public health from biofilm-forming isolates found in broiler chickens.","PeriodicalId":36960,"journal":{"name":"Proceedings of the Pakistan Academy of Sciences: Part B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Pakistan Academy of Sciences: Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53560/ppasb(60-3)866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Control of biosecurity and biosecurity within poultry consists of a set of practical measures meant to prevent and control the spread of disease between people and animals. Infections, caused mainly by zoonotic agents, occur frequently due to the lack of safety monitoring regulations, as well as the inappropriate use of antimicrobial products, leading to the emergence of antimicrobial-resistant microorganisms. Pseudomonas aeruginosa, often known as the MDR pathogen has evolved resistance to multiple antibiotics. Because of its propensity to build biofilms in meat and other food products, P. aeruginosa is even more resilient to the phenomenon of drug resistance which is a major public health issue. Standard microbiological and biochemical tests were used to isolate and identify P. aeruginosa from a total of 100 meat samples (20 from each district from broiler chicken meat) gathered from various butcher shops and supermarkets. The Kirby Bauer method was used to identify antibiotic resistance, while the microtiter plate test was used to monitor biofilm formation. It was found that P. aeruginosa was identified from 22% of the broiler chicken meat samples and showed resistance to Cloxacillin, teicoplanin, ciprofloxacin, imipenem, and meropenem, followed by linezolid, streptomycin, amikacin, compound sulphonamide, aztreonam and cefepime which showed intermediate resistance. Multiple Antibiotic Resistance Index (MARI) was calculated as 0.45 for a total of 11 antibiotics. Also, all 22 MDR isolates of P. aeruginosa tested positive for the presence of the biofilm. In conclusion, it was determined that chicken meat was contaminated with Pseudomonas aeruginosa, and these strains that produce biofilms are more resistant to antibiotics. Thus, there is a serious threat to public health from biofilm-forming isolates found in broiler chickens.