Advances in digital light processing of hydrogels

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Xingwu Mo, Liliang Ouyang, Zhuo Xiong, Ting Zhang
{"title":"Advances in digital light processing of hydrogels","authors":"Xingwu Mo, Liliang Ouyang, Zhuo Xiong, Ting Zhang","doi":"10.1088/1748-605X/ac6b04","DOIUrl":null,"url":null,"abstract":"Hydrogels, three-dimensional (3D) networks of hydrophilic polymers formed in water, are a significant type of soft matter used in fundamental and applied sciences. Hydrogels are of particular interest for biomedical applications, owing to their soft elasticity and good biocompatibility. However, the high water content and soft nature of hydrogels often make it difficult to process them into desirable solid forms. The development of 3D printing (3DP) technologies has provided opportunities for the manufacturing of hydrogels, by adopting a freeform fabrication method. Owing to its high printing speed and resolution, vat photopolymerization 3DP has recently attracted considerable interest for hydrogel fabrication, with digital light processing (DLP) becoming a widespread representative technique. Whilst acknowledging that other types of vat photopolymerization 3DP have also been applied for this purpose, we here only focus on DLP and its derivatives. In this review, we first comprehensively outline the most recent advances in both materials and fabrication, including the adaptation of novel hydrogel systems and advances in processing (e.g. volumetric printing and multimaterial integration). Secondly, we summarize the applications of hydrogel DLP, including regenerative medicine, functional microdevices, and soft robotics. To the best of our knowledge, this is the first time that either of these specific review focuses has been adopted in the literature. More importantly, we discuss the major challenges associated with hydrogel DLP and provide our perspectives on future trends. To summarize, this review aims to aid and inspire other researchers investigatng DLP, photocurable hydrogels, and the research fields related to them.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ac6b04","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 5

Abstract

Hydrogels, three-dimensional (3D) networks of hydrophilic polymers formed in water, are a significant type of soft matter used in fundamental and applied sciences. Hydrogels are of particular interest for biomedical applications, owing to their soft elasticity and good biocompatibility. However, the high water content and soft nature of hydrogels often make it difficult to process them into desirable solid forms. The development of 3D printing (3DP) technologies has provided opportunities for the manufacturing of hydrogels, by adopting a freeform fabrication method. Owing to its high printing speed and resolution, vat photopolymerization 3DP has recently attracted considerable interest for hydrogel fabrication, with digital light processing (DLP) becoming a widespread representative technique. Whilst acknowledging that other types of vat photopolymerization 3DP have also been applied for this purpose, we here only focus on DLP and its derivatives. In this review, we first comprehensively outline the most recent advances in both materials and fabrication, including the adaptation of novel hydrogel systems and advances in processing (e.g. volumetric printing and multimaterial integration). Secondly, we summarize the applications of hydrogel DLP, including regenerative medicine, functional microdevices, and soft robotics. To the best of our knowledge, this is the first time that either of these specific review focuses has been adopted in the literature. More importantly, we discuss the major challenges associated with hydrogel DLP and provide our perspectives on future trends. To summarize, this review aims to aid and inspire other researchers investigatng DLP, photocurable hydrogels, and the research fields related to them.
水凝胶数字光处理研究进展
水凝胶是在水中形成的亲水性聚合物的三维(3D)网络,是一种重要的软物质类型,用于基础科学和应用科学。水凝胶由于其柔软的弹性和良好的生物相容性,在生物医学应用中具有特别的意义。然而,水凝胶的高含水量和软性质往往使其难以加工成理想的固体形式。3D打印(3DP)技术的发展为水凝胶的制造提供了机会,采用了一种自由形状的制造方法。由于其高打印速度和分辨率,还原光聚合3d打印最近引起了水凝胶制造的极大兴趣,数字光处理(DLP)成为一种广泛的代表性技术。虽然承认其他类型的还原光聚合3DP也已用于此目的,但我们在这里只关注DLP及其衍生物。在这篇综述中,我们首先全面概述了材料和制造方面的最新进展,包括新型水凝胶系统的适应和加工方面的进展(例如体积打印和多材料集成)。其次,总结了水凝胶DLP在再生医学、功能微器件、软机器人等领域的应用。据我们所知,这是第一次在文献中采用这两种特定的综述焦点。更重要的是,我们讨论了与水凝胶DLP相关的主要挑战,并提供了我们对未来趋势的看法。综上所述,本文旨在帮助和启发其他研究DLP、光固化水凝胶及其相关研究领域的研究人员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical materials
Biomedical materials 工程技术-材料科学:生物材料
CiteScore
6.70
自引率
7.50%
发文量
294
审稿时长
3 months
期刊介绍: The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare. Typical areas of interest include (but are not limited to): -Synthesis/characterization of biomedical materials- Nature-inspired synthesis/biomineralization of biomedical materials- In vitro/in vivo performance of biomedical materials- Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning- Microfluidic systems (including disease models): fabrication, testing & translational applications- Tissue engineering/regenerative medicine- Interaction of molecules/cells with materials- Effects of biomaterials on stem cell behaviour- Growth factors/genes/cells incorporated into biomedical materials- Biophysical cues/biocompatibility pathways in biomedical materials performance- Clinical applications of biomedical materials for cell therapies in disease (cancer etc)- Nanomedicine, nanotoxicology and nanopathology- Pharmacokinetic considerations in drug delivery systems- Risks of contrast media in imaging systems- Biosafety aspects of gene delivery agents- Preclinical and clinical performance of implantable biomedical materials- Translational and regulatory matters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信