Jing He, Zhenning Li, Tianhao Yu, Weizuo Wang, Meihan Tao, Shilin Wang, Yizhan Ma, Jun Fan, Xiaohong Tian, Xiaohong Wang, R. Javed, Q. Ao
{"title":"In vitro and in vivo biocompatibility study on acellular sheep periosteum for guided bone regeneration","authors":"Jing He, Zhenning Li, Tianhao Yu, Weizuo Wang, Meihan Tao, Shilin Wang, Yizhan Ma, Jun Fan, Xiaohong Tian, Xiaohong Wang, R. Javed, Q. Ao","doi":"10.1088/1748-605X/ab597f","DOIUrl":null,"url":null,"abstract":"This study addresses the fabrication of an extracellular matrix material of the acellular sheep periosteum and the systematic evaluation of its biocompatibility to explore its potential application in guided bone regeneration. Sheep periosteum was harvested and decellularized by a combined decellularization protocol. The effectiveness of cell removal was proved and residual α-Gal antigen was also quantitatively detected. Then, mouse MC3T3-E1 cells were seeded onto the acellular periosteum. A scanning electron microscope (SEM) was used to record the whole process of cell adhesion. The CCK-8 assay suggested that the acellular periosteum not only had zero toxic effect on pre-osteoblasts, but played a positive role in cell proliferation. We also tested whether the acellular periosteum possesses favorable osteogenesis induction activity using an alkaline phosphatase (ALP) assay and a quantitative real-time PCR (Col I, Runx2, OCN) assay. An in vivo study of a subcutaneous implantation test using Sprague Dawley (SD) rats was performed to detect the changes in IL-2, IFN-γ and IL-4 in serum and elucidate the host’s local response to acellular periosteum through hematoxylin and eosin (HE) and immunohistochemical staining. The results show that acellular sheep periosteum did not elicit a severe immunogenic response via the Th1 pathway, unlike fresh sheep periosteum. In conclusion, acellular sheep periosteum possesses favorable biocompatibility to be employed for guided bone regeneration.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab597f","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ab597f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 11
Abstract
This study addresses the fabrication of an extracellular matrix material of the acellular sheep periosteum and the systematic evaluation of its biocompatibility to explore its potential application in guided bone regeneration. Sheep periosteum was harvested and decellularized by a combined decellularization protocol. The effectiveness of cell removal was proved and residual α-Gal antigen was also quantitatively detected. Then, mouse MC3T3-E1 cells were seeded onto the acellular periosteum. A scanning electron microscope (SEM) was used to record the whole process of cell adhesion. The CCK-8 assay suggested that the acellular periosteum not only had zero toxic effect on pre-osteoblasts, but played a positive role in cell proliferation. We also tested whether the acellular periosteum possesses favorable osteogenesis induction activity using an alkaline phosphatase (ALP) assay and a quantitative real-time PCR (Col I, Runx2, OCN) assay. An in vivo study of a subcutaneous implantation test using Sprague Dawley (SD) rats was performed to detect the changes in IL-2, IFN-γ and IL-4 in serum and elucidate the host’s local response to acellular periosteum through hematoxylin and eosin (HE) and immunohistochemical staining. The results show that acellular sheep periosteum did not elicit a severe immunogenic response via the Th1 pathway, unlike fresh sheep periosteum. In conclusion, acellular sheep periosteum possesses favorable biocompatibility to be employed for guided bone regeneration.
期刊介绍:
The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Typical areas of interest include (but are not limited to):
-Synthesis/characterization of biomedical materials-
Nature-inspired synthesis/biomineralization of biomedical materials-
In vitro/in vivo performance of biomedical materials-
Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning-
Microfluidic systems (including disease models): fabrication, testing & translational applications-
Tissue engineering/regenerative medicine-
Interaction of molecules/cells with materials-
Effects of biomaterials on stem cell behaviour-
Growth factors/genes/cells incorporated into biomedical materials-
Biophysical cues/biocompatibility pathways in biomedical materials performance-
Clinical applications of biomedical materials for cell therapies in disease (cancer etc)-
Nanomedicine, nanotoxicology and nanopathology-
Pharmacokinetic considerations in drug delivery systems-
Risks of contrast media in imaging systems-
Biosafety aspects of gene delivery agents-
Preclinical and clinical performance of implantable biomedical materials-
Translational and regulatory matters