Length of the state trace: A method for partitioning model complexity

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
F. Gregory Ashby
{"title":"Length of the state trace: A method for partitioning model complexity","authors":"F. Gregory Ashby","doi":"10.1016/j.jmp.2023.102755","DOIUrl":null,"url":null,"abstract":"<div><p>A novel and easy-to-compute measure is proposed that compares the relative contribution of each parameter of a mathematical model to the model’s mathematical flexibility or complexity, with respect to accounting for the results of some specific experiment. When the data space is a two-dimensional plot of the type used in standard state-trace analysis, then the model complexity contributed by a single parameter equals the length of the state trace (LOST) that results when that parameter is varied and all other parameters are held constant. For the normal, equal-variance, signal-detection model, the average LOST when the response-criterion parameter <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> is varied is about four times greater than the average LOST when the sensitivity parameter <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is varied. As a result, applying the signal-detection model to random data almost always leads to the conclusion that all the points share the same value of <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> but were generated under different values of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span>. Parameters that have non-monotonic effects on performance, such as the attention-weight parameter that is used in popular exemplar and prototype models of categorization, tend to have large LOSTs, and therefore contribute to model flexibility more than parameters that have monotonic effects on performance. Comparing LOSTs for exemplar and prototype models also leads to some deep new insights into the structure of both models.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249623000111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

A novel and easy-to-compute measure is proposed that compares the relative contribution of each parameter of a mathematical model to the model’s mathematical flexibility or complexity, with respect to accounting for the results of some specific experiment. When the data space is a two-dimensional plot of the type used in standard state-trace analysis, then the model complexity contributed by a single parameter equals the length of the state trace (LOST) that results when that parameter is varied and all other parameters are held constant. For the normal, equal-variance, signal-detection model, the average LOST when the response-criterion parameter XC is varied is about four times greater than the average LOST when the sensitivity parameter d is varied. As a result, applying the signal-detection model to random data almost always leads to the conclusion that all the points share the same value of d but were generated under different values of XC. Parameters that have non-monotonic effects on performance, such as the attention-weight parameter that is used in popular exemplar and prototype models of categorization, tend to have large LOSTs, and therefore contribute to model flexibility more than parameters that have monotonic effects on performance. Comparing LOSTs for exemplar and prototype models also leads to some deep new insights into the structure of both models.

状态跟踪长度:一种划分模型复杂性的方法
本文提出了一种新颖且易于计算的度量方法,比较数学模型的每个参数对模型的数学灵活性或复杂性的相对贡献,从而考虑到某些特定实验的结果。如果数据空间是标准状态跟踪分析中使用的那种类型的二维图,那么单个参数所贡献的模型复杂性等于当该参数变化而所有其他参数保持不变时所产生的状态跟踪(LOST)的长度。对于正态、等方差的信号检测模型,响应准则参数XC变化时的平均loss约为灵敏度参数d '变化时的平均loss的4倍。因此,将信号检测模型应用于随机数据时,几乎总是得出所有的点都具有相同的d '值,但在不同的XC值下生成。对性能具有非单调影响的参数,例如在流行的分类范例和原型模型中使用的注意力权重参数,往往具有较大的loss,因此比对性能具有单调影响的参数更有助于模型的灵活性。比较范例模型和原型模型的loss还可以对这两种模型的结构产生一些深刻的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信